Металлический блеск алюминия

Алюминий – это пластичный и лёгкий металл белого цвета, покрытый серебристой матовой оксидной плёнкой. В периодической системе Д. И. Менделеева этот химический элемент обозначается, как Al (Aluminium) и находится в главной подгруппе III группы, третьего периода, под атомным номером 13. Купить алюминий вы можете на нашем сайте.

История открытия

В 16 веке знаменитый Парацельс сделал первый шаг к добыче алюминия. Из квасцов он выделил «квасцовую землю», которая содержала оксид неизвестного тогда металла. В 18 веке к этому эксперименту вернулся немецкий химик Андреас Маргграф. Оксид алюминия он назвал «alumina», что на латинском языке означает «вяжущий». На тот момент металл не пользовался популярностью, так как не был найден в чистом виде.
Долгие годы выделить чистый алюминий пытались английские, датские и немецкие учёные. В 1855 году в Париже на Всемирной выставке металл алюминий произвёл фурор. Из него делали только предметы роскоши и ювелирные украшения, так как металл был достаточно дорогим. В конце 19 века появился более современный и дешёвый метод получения алюминия. В 1911 году в Дюрене выпустили первую партию дюралюминия, названного в честь города. В 1919 из этого материала был создан первый самолёт.

Физические свойства

Металл алюминий характеризуется высокой электропроводностью, теплопроводностью, стойкостью к коррозии и морозу, пластичностью. Он хорошо поддаётся штамповке, ковке, волочению, прокатке. Алюминий хорошо сваривается различными видами сварки. Важным свойством является малая плотность около 2,7 г/см³. Температура плавления составляет около 660°С.
Механические, физико-химические и технологические свойства алюминия зависят от наличия и количества примесей, которые ухудшают свойства чистого металла. Основные естественные примеси – это кремний, железо, цинк, титан и медь.

По степени очистки различают алюминий высокой и технической чистоты. Практическое различие заключается в отличии коррозионной устойчивости к некоторым средам. Чем чище металл, тем он дороже. Технический алюминий используется для изготовления сплавов, проката и кабельно-проводниковой продукции. Металл высокой чистоты применяют в специальных целях.
По показателю электропроводности алюминий уступает только золоту, серебру и меди. А сочетание малой плотности и высокой электропроводности позволяет конкурировать в сфере кабельно-проводниковой продукции с медью. Длительный отжиг улучшает электропроводность, а нагартовка ухудшает.

Теплопроводность алюминия повышается с увеличением чистоты металла. Примеси марганца, магния и меди снижают это свойство. По показателю теплопроводности алюминий проигрывает только меди и серебру. Благодаря этому свойству металл применяется в теплообменниках и радиаторах охлаждения.
Алюминий обладает высокой удельной теплоёмкостью и теплотой плавления. Эти показатели значительно больше, чем у большинства металлов. Чем выше степень чистоты алюминия, тем больше он способен отражать свет от поверхности. Металл хорошо полируется и анодируется.

Алюминий имеет большое сродство к кислороду и покрывается на воздухе тонкой прочной плёнкой оксида алюминия. Эта плёнка защищает металл от последующего окисления и обеспечивает его хорошие антикоррозионные свойства. Алюминий обладает стойкостью к атмосферной коррозии, морской и пресной воде, практически не вступает во взаимодействия с органическими кислотами, концентрированной или разбавленной азотной кислотой.

Химические свойства

Алюминий — это достаточно активный амфотерный металл. При обычных условиях прочная оксидная плёнка определяет его стойкость. Если разрушить оксидную плёнку, алюминий выступает как активный металл-восстановитель. В мелкораздробленном состоянии и при высокой температуре металл взаимодействует с кислородом. При нагревании происходят реакции с серой, фосфором, азотом, углеродом, йодом. При обычных условиях металл взаимодействует с хлором и бромом. С водородом реакции не происходит. С металлами алюминий образует сплавы, содержащие интерметаллические соединения – алюминиды.

При условии очищения от оксидной пленки, происходит энергичное взаимодействие с водой. Легко протекают реакции с разбавленными кислотами. Реакции с концентрированной азотной и серной кислотой происходят при нагревании. Алюминий легко реагирует со щелочами. Практическое применение в металлургии нашло свойство восстанавливать металлы из оксидов и солей – реакции алюминотермии.

Алюминий находится на первом месте среди металлов и на третьем среди всех элементов по распространённости в земной коре. Приблизительно 8% массы земной коры составляет именно этот металл. Алюминий содержится в тканях животных и растений в качестве микроэлемента. В природе он встречается в связанном виде в форме горных пород, минералов. Каменная оболочка земли, находящаяся в основе континентов, формируется именно алюмосиликатами и силикатами.

Алюмосиликаты – это минералы, образовавшиеся в результате вулканических процессов в соответствующих условиях высоких температур. При разрушении алюмосиликатов первичного происхождения (полевые шпаты) сформировались разнообразные вторичные породы с более высоким содержанием алюминия (алуниты, каолины, бокситы, нефелины). В состав вторичных пород алюминий входит в виде гидроокисей или гидросиликатов. Однако не каждая алюминийсодержащая порода может быть сырьём для глинозёма – продукта, из которого при помощи метода электролиза получают алюминий.

Наиболее часто алюминий получают из бокситов. Залежи этого минерала распространены в странах тропического и субтропического пояса. В России также применяются нефелиновые руды, месторождения которых располагаются в Кемеровской области и на Кольском полуострове. При добыче алюминия из нефелинов попутно также получают поташ, кальцинированную соду, цемент и удобрения.

В бокситах содержится 40-60% глинозёма. Также в составе имеются оксид железа, диоксид титана, кремнезём. Для выделения чистого глинозёма используют процесс Байера. В автоклаве руду нагревают с едким натром, охлаждают, отделяют от жидкости «красный шлам» (твёрдый осадок). После осаждают гидроокись алюминия из полученного раствора и прокаливают её для получения чистого глинозёма. Глинозём должен соответствовать высоким стандартам по чистоте и размеру частиц.

Из добытой и обогащённой руды извлекают глинозём (оксид алюминия). Затем методом электролиза глинозём превращают в алюминий. Заключительным этапом является восстановление процессом Холла-Эру. Процесс заключается в следующем: при электролизе раствора глинозёма в расплавленном криолите происходит выделение алюминия. Катодом служит дно электролизной ванны, а анодом – угольные бруски, находящиеся в криолите. Расплавленный алюминий осаждается под раствором криолита с 3-5% глинозёма. Температура процесса поднимается до 950°С, что намного превышает температуру плавления самого алюминия (660°С). Глубокую очистку алюминия проводят зонной плавкой или дистилляцией его через субфторид.

Применение

Алюминий применяется в металлургии в качестве основы для сплавов (дуралюмин, силумин) и легирующего элемента (сплавы на основе меди, железа, магния, никеля). Сплавы алюминия используются в быту, в архитектуре и строительстве, в судостроении и автомобилестроении, а также в космической и авиационной технике. Алюминий применяется при производстве взрывчатых веществ. Анодированный алюминий (покрытый окрашенными плёнками из оксида алюминия) применяют для изготовления бижутерии. Также металл используется в электротехнике.

Рассмотрим, как используют различные изделия из алюминия.

Алюминиевая лента представляет собой тонкую алюминиевую полосу толщиной 0,3-2 мм, шириной 50-1250 мм, которая поставляется в рулонах. Используется лента в пищевой, лёгкой, холодильной промышленности для изготовления охлаждающих элементов и радиаторов.

Круглая алюминиевая проволока применяется для изготовления кабелей и проводов для электротехнических целей, а прямоугольная для обмоточных проводов.

Алюминиевые трубы отличаются долговечностью и стойкостью в условиях сельских и городских промышленных районов. Применяются они в отделочных работах, дорожном строительстве, конструкции автомобилей, самолётов и судов, производстве радиаторов, трубопроводов и бензобаков, монтаже систем отопления, магистральных трубопроводов, газопроводов, водопроводов.

Алюминиевые втулки характеризуются простотой в обработке, монтаже и эксплуатации. Используются они для концевого соединения металлических тросов.

Алюминиевый круг — это сплошной профиль круглого сечения. Используется это изделие для изготовления различных конструкций.

Алюминиевый пруток применяется для изготовления гаек, болтов, валов, крепежных элементов и шпинделей.
Около 3 мг алюминия каждый день поступает в организм человека с продуктами питания. Больше всего металла в овсянке, горохе, пшенице, рисе. Учёными установлено, что он способствует процессам регенерации, стимулирует развитие и рост тканей, оказывает влияние на активность пищеварительных желёз и ферментов.

При использовании алюминиевой посуды в быту необходимо помнить, что хранить и нагревать в ней можно исключительно нейтральные жидкости. Если же в такой посуде готовить, к примеру, кислые щи, то алюминий поступит в еду, и она будет иметь неприятный «металлический» привкус.

Алюминий входит в состав лекарственных препаратов, используемых при заболеваниях почек и желудочно-кишечного тракта.

Источник:
http://cu-prum.ru/alyuminij1.html

Базовые понятия. Запись 7 (физические свойства металлов)

В данной статье ознакомимся с основными физическими свойствами металлов. Вашему вниманию будут представлены пластичность, электропроводность, теплопроводность, металлический блеск, твёрдость, плотность, температура плавления.

Начнём с пластичности.

Пластичность — это свойство вещества изменять форму под внешним воздействием, не разрушаясь, и сохранять принятую форму после прекращения этого воздействия.

Почему у металлов так выходит? Это происходит из-за их строения, виновной выступает кристаллическая решётка. Она состоит из узлов и свободных электронов, которые бегают между углами, никому не принадлежа. В узлах могут быть атомы, молекулы или ионы. Электроны то присоединяются к ним, то уходят. Именно взаимосвязью между бегающими по всему веществу электронами и узлами объяснятся свойство пластичности: слои смещаются друг с другом без разрыва.

Как же определить и сравнить пластичность разных металлов? Она определяется при испытании на растяжение. Под действием нагрузки образцы разных металлов в различной степени удлиняются, а их поперечное сечение уменьшается. Чем больше способен образец удлиняться, а его поперечное сечение сужаться, тем пластичнее образец.

Существуют две единицы измерения: относительное удлинение и относительное сужение при разрыв.

По степени пластичности металлы принято подразделять следую­щим образом:

-высокопластичные (относительное удлинение превосходит 40 %) — металлы, составляющие основу большинства конструкционных сплавов (алюминий, медь, железо, титан, свинец) и «легкие» металлы (натрий, калий, рубидий и др.);

-пластичные (относительное удлинение лежит в диапазоне между 40 и 3%) — магний, цинк, молибден, вольфрам, висмут и др. (наиболее обширная группа);

-хрупкие (относительное удлинение меньше 3%) — хром, марганец, кобальт, сурьма.

Электропроводность — свойство проводить электрический ток.

Электрическим током зовём упорядоченное движение частиц. В нашем случае под действие некого поля начинают двигаться в одном направлении все свободные электроны в образце.

Электропроводность металлов обусловлена концентрацией электронов и их подвижностью. Чем сильнее металл нагрет, тем сильнее прыгающие узлы будут мешать электронам свободно передвигаться в выбранном направлении. Чем больше столкновений, тем сильнее нагревается металл. Данный эффект применяется в нагревательных приборах и в лампах накаливания.

Теплопроводность — свойство металлов переносить энергию от одной части тела к другой.

Оно связано с высокой подвижностью электронов: сталкиваясь с колеблющимися в узлах решётки ионами, атомами, электроны обмениваются с ними энергией. Как видим, данное свойство связано с предыдущим.

Металлический блеск — способность металлов отражать световые лучи.

Данное свойство обуславливается несколькими причинами. Во-первых, от гладкости поверхности, т.е. падающая электромагнитная волна (свет) не застревала в неровностях, а могла отразиться обратно.

Во-вторых, свет попадает на металл, поглощается электронами и через некое малое время излучается обратно, при этом количество энергии, которое может уйти на нагревание, небольшое. Отражённую волну воспринимает наш глаз, цвет волны определяется из величины «длина волны».

Твёрдость — свойство твёрдого тела сопротивляться проникновению в него другого тела.

Если хотите много теории по данному свойству, то прошу сюда:

Оценка металла по шкале Мооса берёт за основу то, насколько легко образец может быть поцарапан другими металлами. Например, коэффициент твердости золота — 2,5-3, что значительно ниже коэффициента твердости большинства других материалов. В то время как графит и некоторые виды пластика стоят на одном конце шкалы, имея значение 1, то на другой её конец ставится алмаз, одно из самых твердых веществ на Земле. Он оценивается в 10 баллов.

Читайте также  Алюминиевый сплав АМг2 - характеристики материала

Олово: 1.5
Цинк: 2.5
Золото: 2.5-3
Серебро: 2.5-3
Алюминий: 2.5-3
Медь: 3
Медь: 3
Бронза: 3
Никель: 4
Платина: 4-4.5
Сталь: 4-4.5
Железо: 4.5
Палладий: 4.75
Родий: 6
Титан: 6
Укрепленная сталь: 7-8
Вольфрам: 7.5
Карбид вольфрама: 8.5-9

Плотность — это отношение массы на объём.

Тяжело расшифровать определение, но я попробую. Оно значит, что при равном объёме разные металлы будут проявлять разную инерцию. Конечно, если и стало понятнее, то на чуток.

-лёгкие (плотность не более 5 г/см 3 ) — магний, алюминий, титан и др.:

-тяжёлые — (плотность от 5 до 10 г/см 3 ) — железо, никель, медь, цинк, олово и др. (это наиболее обширная группа);

-очень тяжёлые (плотность более 10 г/см 3 ) — молибден, вольфрам, золото, свинец и др.

Таблицы с плотностями:

Температура плавления — температура, при которой осуществляется процесс перехода вещества из твёрдого состояния в жидкое.

При увеличении внутренней энергии начинают сильнее колебаться узлы, решётка теряет свою структуру, нарушаются связи. Примерно такой процесс можно назвать переходом в жидкое состоянии.

Делят металлы на несколько групп:

-легкоплавкие (температура плавления не превышает 600 o С) — цинк, олово, свинец, висмут и др.;

-среднеплавкие (от 600 o С до 1600 o С) — к ним относятся почти половина металлов, в том числе магний, алюминий, железо, никель, медь, золото;

-тугоплавкие ( более 1600 o С) — вольфрам, молибден, титан, хром и др.

Источник:
http://arhimpeless.wordpress.com/2017/11/19/bazovie-poniati-z7/

Алюминий: физические свойства, получение, применение, история

Физические свойства алюминия

Алюминий — мягкий, легкий, серебристо-белый металл с высокой тепло- и электропроводностью. Температура плавления 660°C.

По распространенности в земной коре алюминий занимает 3-е место после кислорода и кремния среди всех атомов и 1-е место — среди металлов.

К достоинствам алюминия и его сплавов следует отнести его малую плотность (2,7 г/см3), сравнительно высокие прочностные характеристики, хорошую тепло- и электропроводность, технологичность, высокую коррозионную стойкость. Совокупность этих свойств позволяет отнести алюминий к числу важнейших технических материалов.

Алюминий и его сплавы делятся по способу получения на деформируемые, подвергаемые обработке давлением и литейные, используемые в виде фасонного литья; по применению термической обработки — на термически не упрочняемые и термически упрочняемые, а также по системам легирования.

Получение

Впервые алюминий был получен Гансом Эрстедом в 1825 году. Современный метод получения разработали независимо друг от друга американец Чарльз Холл и француз Поль Эру. Он заключается в растворении оксида алюминия Al2O3 в расплаве криолита Na3AlF6 с последующим электролизом с использованием графитовых электродов. Такой метод получения требует больших затрат электроэнергии, и поэтому оказался востребован только в XX веке.

Применение

Алюминий широко применяется как конструкционный материал . Основные достоинства алюминия в этом качестве — легкость, податливость штамповке, коррозионная стойкость (на воздухе алюминий мгновенно покрывается прочной пленкой Al2O3, которая препятствует его дальнейшему окислению), высокая теплопроводность, неядовитость его соединений. В частности, эти свойства сделали алюминий чрезвычайно популярным при производстве кухонной посуды, алюминиевой фольги в пищевой промышленности и для упаковки.

Основной недостаток алюминия как конструкционного материала — малая прочность, поэтому его обычно сплавляют с небольшим количеством меди и магния (сплав называется дюралюминий ).

Электропроводность алюминия сравнима с медью, при этом алюминий дешевле. Поэтому он широко применяется в электротехнике для изготовления проводов, их экранирования и даже в микроэлектронике при изготовлении проводников в чипах. Правда, у алюминия как электротехнического материала есть неприятное свойство — из-за прочной оксидной пленки его тяжело паять.

Благодаря комплексу свойств широко распространен в тепловом оборудовании.

Внедрение алюминиевых сплавов в строительстве уменьшает металлоемкость, повышает долговечность и надежность конструкций при эксплуатации их в экстремальных условиях (низкая температура, землетрясение и т.п.).

Алюминий находит широкое применение в различных видах транспорта. На современном этапе развития авиации алюминиевые сплавы являются основными конструкционными материалами в самолетостроении. Алюминий и сплавы на его основе находят все более широкое применение в судостроении. Из алюминиевых сплавов изготовляют корпусы судов, палубные надстройки, коммуникацию и различного рода судовое оборудование.

Идут исследования по разработке пенистого алюминия как особо прочного и легкого материала.

Драгоценный алюминий

В настоящее время алюминий является одним из самых популярных и нашедших широкое применение металлов. С самого момента открытия в середине XIX века его считали одним из ценнейших благодаря удивительным качествам: белый как серебро, легкий по весу и не подверженный воздействию окружающей среды. Стоимость его была выше цен на золото. Не удивительно, что в первую очередь алюминий нашел свое применение в создании ювелирных изделий и дорогих декоративных элементов.

В 1855 г. на Универсальной выставке в Париже алюминий был самой главной достопримечательностью. Изделия из алюминия располагались в витрине, соседствующей с бриллиантами французской короны. Постепенно зародилась определенная мода на алюминий. Его считали благородным малоизученным металлом, используемым исключительно для создания произведений искусства.

Наиболее часто алюминий использовали ювелиры. При помощи особой обработки поверхности ювелиры добивались наиболее светлого цвета металла, из-за чего его часто приравнивали к серебру. Но в сравнении с серебром, алюминий обладал более мягким блеском, чем обуславливалась еще большая любовь к нему ювелиров.

Так как химические и физические свойства алюминия сначала были слабо изучены, ювелиры сами изобретали новые техники его обработки. Алюминий технически легко обрабатывать, этот мягкий металл позволяет создавать отпечатки любых узоров, наносить рисунки и создавать желаемой формы изделия. Алюминий покрывался золотом, полировался и доводился до матовых оттенков.

Но со временем алюминий стал падать цене. Если в 1854-1856 годах стоимость одного килограмма алюминия составляла 3 тысячи старых франков, то в середине 1860-х годов за килограмм этого металла давали уже около ста старых франков. Впоследствии из-за низкой стоимости алюминий вышел из моды.

В настоящее время самые первые алюминиевые изделия представляют большую редкость. Большинство из них не пережило обесценивания металла и было заменено серебром, золотом и другими драгоценными металлами и сплавами. В последнее время вновь наблюдается повышенный интерес к алюминию у специалистов. Этот металл стал темой отдельной выставки , организованной в 2000 году Музеем Карнеги в Питсбурге. Во Франции расположен Институт истории алюминия , который в частности занимается исследованием первых ювелирных изделий из этого металла.

В Советском союзе из алюминия делали общепитовские приборы, чайники и т.д. И не только. Первый советский спутник был выполнен из алюминиевого сплава. Другой потребитель алюминия — электротехническая промышленность: из него делаются провода высоковольтных линий передач, обмотки моторов и трансформаторов, кабели, цоколи ламп, конденсаторы и многие другие изделия. Кроме того, порошок алюминия применяют во взрывчатых веществах и твердом топливе для ракет, используя его свойство быстро воспламеняться: если бы алюминий не покрывался тончайшей оксидной пленкой, то мог бы вспыхивать на воздухе.

Последнее изобретение — пеноалюминий, т.н. «металлический поролон», которому предсказывают большое будущее.

Другие статьи по сходной тематике

Основные понятия о токарной обработке и токарных станках.

Стали марок AISI 409, 430, 439 — аналоги отечественных марок 08×13, 12×17 и 08×17Т

Гидравлические гильотинные ножницы, гильотинные ножницы с ЧПУ для раскроя и обработки листовых материалов.

Правила нанесения обозначений шероховатости поверхностей на чертежах

Источник:
http://tochmeh.ru/info/alum2.php

Металлический блеск алюминия

ОСНОВНЫМИ ПРЕИМУЩЕСТВАМИ АНОДИРОВАННОГО АЛЮМИНИЯ ЯВЛЯЮТСЯ:

1. Натуральный металлический блеск и респектабельный внешний вид

2. Отличная коррозионная стойкость

3. Группа горючести – НГ

4. Более 40 лет доказанного срока службы

5. Исключительная стойкость к царапинам

6. Нет риска отслоения анодной пленки

7. Нет риска выцветания

8. Нет риска пыления

9. Нет риска образования нитевидной коррозии

10. Сохранение оригинальной поверхностной структуры и дизайна

11. Оптимальное покрытие поверхности

12. Анодная пленка полностью прозрачная

13. Возможен постоянный контроль качества без повреждения тестируемой поверхности

14. 100% подлежит переработке

15. Производственный процесс приведен в соответствие с последними экологическими нормами

16. Имеет гарантию на срок службы (см. гарантию)

1. АУТЕНТИЧНЫЙ МЕТАЛЛИЧЕСКИЙ БЛЕСК И ВОСПРИЯТИЕ

Прозрачный анодированный слой прекрасно интегрируется в поверхность металла, полностью сохраняя естественный цвет алюминия.

Анодирование подчеркивает натуральную красоту металла, создает «живую» поверхность, которая постоянно переливается, отражая естественный и искусственный свет.

Независимо от исходного материала – алюминий, сталь, пластик – окрашенная поверхность всегда имеет одинаковый тусклый внешний вид. Для того чтобы добиться истинного металлического блеска, как у анодированного алюминия, для окрашенного материала используется система многослойных металлических пигментов, однако в этом случае существует вероятность появления разнотона.

2. ОТЛИЧНАЯ КОРРОЗИОННАЯ СТОЙКОСТЬ

Даже в своем естественном состоянии алюминий не подвержен коррозии в той же степени, как железо или сталь. Напротив, естественный слой оксида обеспечивает защиту от коррозии.

Анодирование создает идеально структурированный и контролируемый оксидный слой, который обеспечивает поверхность непревзойденной коррозионной стойкостью и сохраняет чистый природный металлический внешний вид алюминия. Анодирование используется для наружного строительства уже более 80 лет. С толщиной анодного слоя, необходимой для наружного применения, анодированный алюминий будет служить

без проблем очень долго даже в самых тяжелых условиях. В частности, анодированная обработка отличается высокой прочностью в городской и морской среде благодаря ее устойчивости к хлоридам и сульфатам.

3. ГРУППА ГОРЮЧЕСТИ – НГ

На молекулярном уровне анодный слой с алюминиевым основанием – это одно целое. А так как алюминий является негорючим материалом и его температура плавления 650°С, то и анодированный алюминий также является материалом с группой горючести НГ.

4. ПРОВЕРЕННАЯ ДОЛГОВЕЧНОСТЬ

Технология анодирования создана почти 100 лет назад. Несмотря на то, что данный процесс постоянно совершенствуется, особенно с точки зрения качества, химические и технологические основы анодирования остаются неизменными.

Свойства современных анодированных поверхностей полностью изучены и предсказуемы, благодаря многочисленным исследованиям. В частности, независимый анализ, проведенный по инициативе нашей компании, подтвердил, что анодированные поверхности остаются неизменными даже при сроках эксплуатации более чем 40 лет!

Для улучшения результатов использования широкой цветовой палитры органических красителей в Европе была разработана технология Sandalor. Суть технологии в двухстадийном окрашивании алюминия. Сначала производится электрохимическое окрашивание, характеризующееся наивысшей светостойкостью, а затем еще и органическое окрашивание. Таким образом, можно получить широкую цветовую гамму покрытий с хорошей стойкостью цвета.

5. СТОЙКОСТЬ К ИСТИРАНИЮ

Оксид алюминия является очень твердым соединением, которое признано вторым по твердости после алмаза по шкале минеральной твердости Мооса. Поэтому поверхность анодированного алюминия обеспечивает превосходную устойчивость к царапинам и истиранию, особенно по сравнению с поверхностью с полимерным покрытием.

6. НЕТ РИСКА ОТСЛОЕНИЯ АНОДНОЙ ПЛЕНКИ

Анодирование является электролитическим процессом, который преобразует поверхность металла в оксидный слой, интегрированный в сам металл. Это не покрытие, нанесенное на поверхности металла. Следовательно, нет рисков разрушения анодной пленки, связанных с такими процессами, как пыление, образование пузырей, трещин, сколов или отслоений, которые могут возникнуть при поверхностных окрашиваниях, к примеру,

Читайте также  Плавильня своими руками - как расплавить алюминий в домашних условиях

при полимерном покрытии.

При анодировании не возникнет ни одного из видов брака отслоения, даже на торцах или сгибах.

7. НЕТ РИСКА ВЫЦВЕТАНИЯ

Натуральное серебро, шампань, бронза и черный цвет не содержат органических элементов. Такие покрытия не выцветают в течение всего срока службы.

Для сравнения органические порошковые покрытия подвержены выцветанию в разной степени в течение всего срока эксплуатации здания.

8. НЕТ РИСКА ПЫЛЕНИЯ

Пыление – это формирование мелкодисперсного порошка на окрашенной поверхности пленки под воздействием атмосферных явлений (песчинок, переносимых ветром). Оно может вызвать значительное ухудшение внешнего вида поверхности со снижением уровня

глянца, поверхностного блеска и цвета.

Анодированный алюминий не подвержен данной проблеме: он устойчив к негативному воздействию окружающей среды, одинаково стабилен в условиях жаркого (пустынного), морского или влажного климата.

9. НЕТ РИСКА НИТЕВИДНОЙ КОРРОЗИИ

Нитевидная коррозия– это «атака» на скрытую область между алюминием и слоем покраски, которая приводит к распространению коррозии под покрасочным слоем.

При анодировании анодный (оксидный) слой составляет одно целое с алюминием, и межуровневый слой просто отсутствует. А это значит, что покрытие никогда не будет подвержено нитевидной коррозии.

Причем в случае повреждения поверхности от удара или прокола, алюминий просто восстановит себя путем естественного окисления.

10. ЕДИНАЯ ОТДЕЛКА ПОВЕРХНОСТИ ДЛЯ ВСЕХ ФОРМ И ТЕКСТУР МЕТАЛЛА

Анодирование является процессом, который может быть осуществлен до или после преобразования металла. Так как это процесс погружения, а не распыления покрытия, анодирование обеспечивает однородность и повторяемость на большинстве металлических форм и текстурированных поверхностей, таких как перфорированные листы, обработанные плиты, полированный или матовый металл, сетчатый материал, поверхности c отделкой и т. д.

Анодирование позволяет избежать риска образования разной толщины покрытия или эффекта «апельсиновой корки», которые характерны для поверхностей с полимерными покрытиями.

11. ОПТИМАЛЬНОЕ ПОКРЫТИЕ

Анодирование как процесс погружения обеспечивает более равномерное покрытие поверхности, особенно для экструдированных профилей.

При распылении краски (и особенно при порошковой покраске) невидимые (скрытые) поверхности часто не прокрашиваются.

12. НЕПРОНИЦАЕМЫЙ АНОДНЫЙ СЛОЙ

Должным образом уплотненный анодный слой является полностью непроницаемым. Кроме того, при резком колебании температуры окружающей среды анодный слой не подвержен физическим изменениям и тепловой хрупкости.

Когда полимерное покрытие подвергается температурному воздействию (ниже температуры стеклования), с ним происходят деструктивные изменения, теряется

эластичность, оно становится хрупким, стеклообразным.

13. КОНТРОЛЬ КАЧЕСТВА

При анодировании возможно постоянно проводит жесткий контроль качества покрытия. Анодируемая поверхность при этом сохраняет все свои свойства и не повреждается.

14. ЭКОЛОГИЧЕСКИЕ ПРЕИМУЩЕСТВА АНОДИРОВАННОГО АЛЮМИНИЯ

Одним из ключевых преимуществ алюминия над другими материалами является то, что он может быть переработан повторно при помощи переплавки с минимальной потерей на каждом цикле. В Европе более 30% потребляемого алюминия изготовлено из переработанного алюминия, и более 90% алюминия, используемого в архитектуре, перерабатывается в конце срока службы здания.

В процессе переработки потребляется всего 5% энергии, необходимой для производства первичного алюминия. Такой подход к использованию материалов вносит значительный вклад в обеспечение экологической безопасности.

Анодированный алюминий – материал уникальный. Он представляет собой только чистый алюминий и его легирующие элементы, а также кислород. Это означает, что он полностью перерабатывается без дополнительных химических процессов и образования выбросов.

Благодаря этому на рынке качественного алюминиевого лома анодированный алюминий ценится очень высоко. Его стоимость позволяет компенсировать затраты на снос зданий в конце срока их эксплуатации.

15. ЭКОЛОГИЧЕСКИ ЧИСТЫЙ ПРОИЗВОДСТВЕННЫЙ ПРОЦЕСС

Современные заводы по архитектурному анодированию соответствуют самым строгим экологическим стандартам с полной переработкой используемых химреактивов и восстановлением сточных вод. Анодирование не требует экологически опасной предварительной обработки, как, например, процесс хроматирования.

Процесс анодирования не сопряжен с образованием CO2 или других выбросов растворителей.

Гарантии часто рассматриваются заказчиками и владельцами зданий как залог уверенности в длительном сроке службы покрытия. Мы даем следующие гарантии на наши покрытия.

Гарантия на отсутствие расслаивания — пожизненная.

Гарантия на отсутствие коррозии:

• при толщине 25 мкм — 40 лет,

• при толщине 20 мкм — 20 лет,

• при толщине 15 мкм — 10 лет,

• при толщине 10 мкм — 5 лет.

Гарантия на стойкость цвета к выгоранию (на изменение дельта Е по шкале LAB не более 3 единиц в

течение гарантийного срока для Беларуси): для С0 — пожизненная, для С31, С32, С33, С34, С35, С31 — 15 лет, для остальных цветов — 5 лет.

Порошковая покраска используется на многих крупных строительных объектах, так как она дешевле и считается альтернативой архитектурного анодирования.

Порошковая покраска мягче, менее долговечна. И если окраска произведена не на должном уровне, то с течением времени может начаться процесс отслоения.

Кроме того, окрашенная поверхность не в состоянии повторить естественный металлический блеск анодирования.

Архитектурное анодирование дает покрытие тверже, чем стекло, а это означает, что оно будет менее подвержено повреждениям, износу и при необходимости может быть очищено при помощи абразива для восстановления исходного блеска.

Полимерное покрытие мягкое, склонное к царапинам, и не может быть подвержено абразивной чистке.

Подобные покрытия очень быстро теряют свой блеск и цвет. И если анодирование используется в архитектуре уже более 80 лет, то полимерное покрытие для фаса-

дов стали применять в конце 1970-х годов, то есть с

того момента прошло менее 40 лет.

Анодирование – это процесс, при котором покрытие «выращивают» на поверхности алюминия, и оно никогда не сможет отслоиться. Полимерное покрытие – это

краска, которая наносится, а в последующем требует сложного ухода.

Если вы хотите, чтобы ваш фасад прослужил очень долго, анодирование является единственным правильным выбором.

Алюминий является металлом, который предоставляет неограниченные возможности для дизайна и творчества и полностью отвечает современным экологическим требованиям и потребительским качествам.

10 КЛЮЧЕВЫХ ПРЕИМУЩЕСТВ АЛЮМИНИЯ

• Презентабельный современный натуральный внешний вид

• Многочисленные возможности выбора текстур, цветов и отделки поверхности

• Высокая прочность на протяжении всего срока службы

• Нуждается в минимальном уходе

• Высокая прочность при легком весе

• Не горит и не выделяет вредные испарения в случае пожара

• Может быть полностью и неоднократно переработан с помощью простой переплавки

• Доступен в разнообразных формах для различных областей применения

• Алюминий создает непроницаемый барьер для воздуха, воды и ветра

Источник:
http://www.ktm-2000.com/catalog/anodirovanie-v-arkhitekture/744/

Особенности состава, свойств и характеристик алюминия

Алюминий представляет собой самый распространенный металл в земной коре. Он относится к группе легких металлов, имеет небольшую плотность и температуру плавления. При этом пластичность и электропроводность находятся на высоком уровне, что обеспечивает его повсеместное использование. Итак, давайте узнаем, каковы удельная температура плавления алюминия и его сплавов (пр. в сравнении с железом и свинцом), тепло- и электропроводность, плотность, другие свойства, а также в чем особенности структуры сплавов алюминия и химического их состава.

Состав и структура алюминия

Для начала нашему рассмотрению подлежат структура и хим.состав алюминия. Предел прочности чистого алюминия крайне небольшой и составляет до 90 МПа. Если же к его составу добавить в небольшом соотношении марганец, медь, цинк или магний, прочность может возрасти до 700 МПа. К такому же результату приведет использование особой термической обработки.

Металл, обладающий наиболее высокой чистотой (99,99% алюминия), может применяться в специальных и лабораторных целях, в остальных же случаях используется алюминий с технической чистотой. Наиболее распространенными примесями в нем могут выступать кремний и железо, которые практически не растворяются в алюминии. В результате их добавки уменьшается пластичность и повышается прочность конечного металла.

Теперь поговорим о свойствах металла алюминия.

Данное видео расскажет о структуре алюминия:

Свойства и характеристики

Свойствами металла служат его высокие показатели тепло- и электропроводности, невосприимчивость к коррозии, высокая пластичность и устойчивость к низким температурам. При этом главное его свойство – это небольшая плотность (около 2,7 г/см 3 .).

Механические, технологические, а также физико-химические свойства этого металла имеют непосредственную зависимость от входящих в его состав примесей. К естественным его компонентам относится кремний и железо.

Давайте узнаем далее, какая температура плавления алюминия и его сплавов

Основные параметры

  • Плотность алюминия составляет 2,7*10 3 кг/м 3 ;
  • Удельный вес — 2,7 г/cм 3 ;
  • Температура плавления алюминия 659°C;
  • Температура кипения 2000°C;
  • Коэффициент линейного расширения составляет — 22,9 *10 6 (1/град).

Теперь рассмотрению подлежат теплопроводность и электропроводность алюминия.

Данное видео сравнивает температуры плавления алюминия и других наиболее часто используемых металлов:

Электропроводность

Важным показателем алюминия является его электропроводность, которая уступает по величине лишь золоту, серебру и меди. Высокий коэффициент электропроводности в сочетании с небольшой плотностью обеспечивает материалу высокую конкурентоспособность в кабельно-проводниковой области.

Помимо основных примесей на этот показатель также влияет титан, марганец и хром. Если алюминий предназначен для производства проводников тока, то суммарное количество примесей не должно превышать 0,01%.

  • Показатель электропроводности может варьироваться, в зависимости от состояния, в котором находится алюминий. Процесс длительного отжига увеличивает этот показатель, а нагартовка, напротив, уменьшает его.
  • Удельное сопротивление при температуре 20 0 С в зависимости от марки металла находится в пределах 0,0277-0,029 мкОм*м.

Теплопроводность

Коэффициент теплопроводности металла составляет около 0,50 кал/см*с*С и увеличивается со степенью его чистоты.

Это значение меньше, чем у меди и серебра, но больше, чем у остальных металлов. Благодаря ему, алюминий активно используется в производстве теплообменников и радиаторов.

Коррозионная стойкость

Сам металл является химически активным веществом, благодаря чему его используют в алюмотермии. При контакте с воздухом на нем образуется тончайшая пленка из окиси алюминия, которая имеет химическую инертность и высокую прочность. Ее главное назначение – это защищать металл от последующего процесса окисления, а также от воздействия коррозии.

  • Если алюминий обладает высокой чистотой, то эта пленка не имеет пор, полностью покрывает его поверхность и обеспечивает надежным сцеплением. В результате металл устойчив не только к воде и воздуху, но и к щелочам и неорганическим кислотам.
  • В тех местах, где находятся примеси, защитный слой пленки может быть поврежденным. Такие места становятся уязвимыми для коррозии. Поэтому на поверхности может наблюдаться коррозия точечного типа. Если марка содержит 99,7% алюминия и менее 0,25% железа, скорость коррозии составляет 1.1, при содержании алюминия на 99,0% этот показатель увеличивается до 31.
  • Содержащееся железо также уменьшает устойчивость металла к щелочам, но не меняет устойчивость к серной и азотной кислотам.

Взаимодействие с разными веществами

Когда алюминий обладает температурой 100 0 С, он способен взаимодействовать с хлором. Независимо от степени нагрева, алюминий растворяет водород, но при этом не ступает в реакцию с ним. Именно потому он является главным составляющим элементом газов, которые присутствуют в металле.

Читайте также  Добыча и производство алюминия в России

В целом алюминий устойчив в следующих средах:

  • Пресная и морская вода;
  • Соли магния, натрия и аммония;
  • Серная кислота;
  • Слабые растворы из хрома и фосфора;
  • Раствор аммиака;
  • Уксусная, яблочная и прочие кислоты.

Алюминий не устойчив:

  • Раствор из серной кислоты;
  • Соляная кислота;
  • Едкие щелочи и их раствор;
  • Щавелевая кислота.

Про токсичность и экологичность алюминия читайте ниже.

Электропроводность меди и алюминия, а также иные сравнения двух металлов представлены в таблице ниже.

Сравнение характеристик алюминия и меди

Токсичность

Хотя алюминий весьма распространен, но он не используется в метаболизме, ни у одного живого существа. Он обладает незначительным токсическим действием, но многие его неорганические соединения, которые растворяются в воде, способны длительное время пребывать в таком состоянии и негативно сказываться на живых организмах. Наиболее ядовитыми веществами выступают ацетаты, хлориды и нитраты.

Еще больше полезной информации о свойствах алюминия содержит данное видео:

Источник:
http://stroyres.net/metallicheskie/vidyi/tsvetnyie/alyuminiy/osobennosti-svoystv-i-harakteristik.html

Свойства анодированного алюминия

В прошлой статье были рассмотрены основные характеристики анодирования алюминия, принципы процесса и основные электролиты анодирования, получение цветных (декоративных) и функциональных оксидных пленок. Рассмотрим свойства анодированного алюминия: механические (эластичность и твердость, износостойкость), оптические, тепловые, электрические и химические свойства.

Содержание:

Толщина анодно-оксидных покрытий

Все анодно-окисные пленки на алюминии имеют тонкий и твердый барьерный слой, примыкающий к основному металлу. Адгезионные свойства пленки не рассматриваются, т. к. окисные пленки на алюминии образуются из основного металла. При использовании нерастворяющих электролитов, содержащих борную кислоту, виннокислый аммоний, борат аммония (так называемых электролитов барьерного типа) образуется только этот барьерный слой, который имеет толщину в нанометрах, которая ориентировочно равна напряжению при анодировании с коэффициентом 1,4. Если используются электролиты, растворяющие алюминий, то толщина пленки значительно больше и может достигать 0,38 мм. При использовании обычного режима оксидирования в серной кислоте толщина покрытий максимально 25 мкм, обычный режим и хромовый электролит позволяют получать пленки до 5 мкм.

Плотность покрытий

Применение нерастворяющих электролитов анодирования позволяет получать барьерный слой с высокой плотностью, который достигает значений в 3,2 г/см 3 . Растворяющие электролиты дают пленки меньшей плотности – от 2,9 до 3,0 г/см 3 . Повышение температуры процесса анодирования и повышение концентрации растворов электролитов снижают плотность оксидных пленок на алюминии, что объясняется повышенным размером пор пленки. Минимальная, регламентируемая плотность покрытия составляет примерно 1,5 г/см 3 .

Прочность, эластичность и твердость анодных пленок

Наибольшее влияние на свойства анодного покрытия оказывает режим работы ванн анодирования (режим процесса). Рассмотрим, как изменяются свойства покрытий в зависимости от основных характеристик процесса:

  1. Повышение температуры раствора и кислотности электролита (быстрое увеличение скорости растворения металла в процессе) – увеличение мягкости, эластичности и поглощающей способности покрытия, снижение защитной способности.
  2. Повышение плотности тока (уменьшение скорости растворения металла при перемешивании раствора) – механические свойства покрытия зависят от температурного режима и степени перемешивания, защитная способность покрытий увеличивается.
  3. Увеличение продолжительности процесса (увеличение скорости растворения металла в процессе) – незначительное увеличение мягкости, эластичности и поглощающей способности, повышение защитных свойств.
  4. Использование переменного тока (скорость растворения металла не меняется) — увеличение мягкости, эластичности и поглощающей способности, снижение защитных свойств анодного покрытия.

Прочность анодированного алюминия

Прочность и пластичность анодных пленок не отличается от характеристик основного металла, что нельзя сказать об усталостной прочности – при получении твердого анодного покрытия сопротивление усталости может быть снижено до 50%. Для нивелирования данного эффекта изделия обрабатывают в 5%-ном кипящем растворе бихромата калия в течение 10-15 минут, при этом основные характеристики анодной пленки не изменяются.

Эластичность и твердость

Как показано выше, твердость и эластичность анодного покрытия в значительной степени зависит от режима работы ванны анодирования. Характеристики эластичности и твердости не измеряются непосредственно, покрытие считаются гибкими (при условии, если поверхность изделия не имела дефектов в виде волосяных трещин), однако изделия нельзя непрерывно деформировать без повреждения пленки. При использовании переменного тока анодные пленки получаются более эластичными, соответственно снижается прочность покрытий. Использование хромовой кислоты также увеличивает степень эластичности пленки. В числовом выражении эластичность можно выразить в степени максимального удлинения металла до образования волосяных трещин (микротрещин), даже при использовании наиболее благоприятного режима процесса и хромового электролита данная величина составит не более 0,3%. На острых углах возможно растрескивание пленки, что оказывает существенное влияние на защитные свойства пленки, в частности на коррозионную защиту. Твердость по шкале Маха анодной пленки составляет 7-9, что значительно ниже, покрытия хромом, полученного гальваническим методом.

Износостойкость поверхности деталей после анодирования

Для оценки износостойкости покрытий используется понятие удельного сопротивления к истиранию, которое характеризуется соотношением износостойкости покрытия к его толщине. Износостойкость напрямую зависит от твердости покрытия и его толщины. Наружный слой покрытия имеет меньшую твердость и износостойкость, что характерно не только для анодных покрытий. При использовании растворяющих электролитов (сернокислого электролита) удельное сопротивление анодной пленки к истиранию увеличивается при повышении напряжения в процессе анодирования. Твердые анодные покрытия имеют в 2-3 раза более высокое удельное сопротивление к истиранию по сравнению с обычными пленками. Существуют различные методы определения износостойкости покрытий, например, регламентирован метод испытания износостойкости поверхности металла при воздействии воздушной струи с абразивом в контролируемом режиме.

Влияние режима анодирования на износостойкость анодных покрытий.

Средняя износостойкость, г.

Толщина покрытия, мкм

Удельное сопротивление к истиранию, г/мкм

Серная кислота (3,3 н.); 20 мин; 21 0 С; 1,5 а/дм 2

Серная кислота (7,5 н.); 20 мин; 21 0 С; 1,5 а/дм 2

Серная кислота (3,3 н.); 20 мин; 15,5 0 С; 1,5 а/дм 2

Оптические свойства анодных пленок

Для того, чтобы дать оценку оптическим свойствам анодных покрытий сравним их со свойствами различных гальванических покрытий и полированной нержавеющей стали. Регламентируют три характеристики отражающей способности – полная, зеркальная (измеряются в % отражения падающего света) и диффузная.

Полная отражающая способность анодной пленки на алюминии после полирования достигает 90%, что ниже только данного значения у посеребренной латуни (98%), но выше чем у хромированной латуни (65%) и полированной нержавеющей стали (60%). С увеличением толщины анодной пленки полная отражающая способность снижается, поэтому в производстве регламентируют толщину пленки, с учетом необходимой защитной способности.

Производство зеркальных покрытий — это отдельное направление и там на отражающую способность влияет прежде всего чистота сплава – получение максимальной отражающей способности (99,9%) возможно при использовании сплавов наивысшей чистоты (99,9% Al), покрытия толщиной до 2 мкм и зеркальной полировки. При этом диффузная отражающая способность имеет минимальные значения.

Если в результате обработки планируется получить матовую поверхность (пленку с диффузной отражающей способностью), в качестве электролита используют раствор фосфорной и серной кислот для яркого травления.

Блестящие анодированные покрытия на алюминии получили широкое распространение при изготовлении автомобильных деталей. Поверхность анодированного алюминиевого сплава, после глянцевания по своим декоративным качествам схожа с поверхностью деталей после гальванического хромирования. Например, алюминиевые автомобильные диски с помощью анодирования могут быть не только окрашены в различные цвета, но и приобрести внешний вид хромированных, что наряду с повышением функциональных качеств обеспечивает исключительные декоративные свойства.

Теплостойкость

Теплостойкость анодных покрытий характеризуется температурой плавления оксида алюминия, которая составляет 2050 0 С, что значительно превосходит температуру плавления чистого алюминия или его сплавов. При повышении температуры оксидные пленки не отслаиваются, но при повышении температуры до 100 0 С возможно растрескивание покрытия, что связано с тем, что коэффициент теплового расширения оксидной пленки около 20% от коэффициента расширения основного металла. Растрескивание оксидной пленки оказывает негативное влияние на коррозионно-защитные свойства покрытий и в некоторой степени ухудшает декоративные качества. Растрескивание покрытий, полученных при использовании хромового электролита значительно ниже, чем покрытий, полученных в серной кислоте. При повышении температуры до 400 0 С начинается процесс дегидратации уплотненных покрытий.

Такие характеристики как тепловое излучение и отражательная способность также находятся в прямой зависимости от характеристик оксидного слоя. Способность излучать тепло для чистого алюминия незначительная, возрастает по мере увеличения толщины оксидного слоя, и при 400 0 С алюминий с толстым оксидным слоем способен излучать тепло с интенсивностью более 70% от излучения абсолютно черного тела, а при рабочей температуре водных и паровых реакторов данная характеристика приближается к 100%. Для увеличения способности алюминиевого изделия отражать тепло толщина оксидной пленки должна быть минимальной и в тоже время в достаточной степени обеспечивать защиту поверхности детали от потускнения. При толщине 0,85 мкм оксидная пленка практически не задерживает ИК излучение и полированная поверхность основного металла отражает до 95% излучения. Очевидно, что отражательная способность в значительной степени зависит от чистоты поверхности материала до анодирования – полированная поверхность с высоким классом чистоты будет отражать тепло эффективнее.

Электрические свойства – пробивное напряжение анодных покрытий

Пробивное напряжение анодных покрытий зависит от характеристик основного металла – сорта алюминия, чистоты поверхности, наличия легирующих компонентов. Также оказывает влияние толщина и текстура оксидного слоя. На покрытиях большой толщины с дополнительным покрытием лаком возможно получение пробивного напряжения более 2 тыс. вольт. На практике, в большинстве случаях такие высокие значения не требуются. Для покрытий, получаемых методом непрерывного анодирования (проволоки, полос) при толщине всего 5-8 мкм достигается пробивное напряжение между витками или совмещенными пластинами в 250 вольт, причем эта значение не изменяется при нагреве до 500 0 С. Растрескивание оксидного слоя при изгибе или повышении температуры не оказывает значительного влияния на характеристику пробивного напряжения (в сухих условиях эксплуатации).

Химические свойства – коррозионная стойкость анодных покрытий

Коррозионная стойкость является важнейшей функциональной характеристикой любого покрытия — нанесенного гальваническим, химическим или другими способами. Для изделий из анодированного алюминия десятилетний срок службы без потери декоративных качеств обычная практика и является гарантийным. При регулярном обслуживании алюминиевых конструкций, очистки их от атмосферных отложений срок службы может быть увеличен в два три раза. Основные характеристики анодного покрытия, влияющие на коррозионную стойкость это его толщина и эффективность уплотнения. Нормативные документы регламентируют толщину покрытий в зависимости от предполагаемых условий эксплуатации. ГОСТ 9.031-74 регламентирует толщину следующим образом: 9-15 мкм для бытовой эксплуатации, 21 мкм эксплуатация в промышленной среде, 25 мкм эксплуатация в агрессивных условиях.

Неточное соблюдение основных параметров процесса анодирования алюминия может в значительной степени снизить коррозионную стойкость. Например, неэффективный отвод тепла от поверхности изделия (при недостаточным перемешиванием электролита) в процессе анодирования приводит к образованию мягкого наружного слоя, что по мнению специалистов может оказать влияние на защитные свойства.

Источник:
http://zpromma.ru/stati/svojstva-anodirovannogo-alyuminiya