Что такое диодный мост и как он работает

Что такое диодный мост и как он работает?

Наряду с линейными устройствами в электрической цепи можно встретить и нелинейные полупроводниковые элементы, имеющие самый разнообразный функционал в составе электронной схемы. Среди полупроводниковых приборов особое место занимает диодный мост, выполняющий роль преобразователя переменного напряжения в постоянное. Хоть для этих целей с тем же успехом может применяться и обычный диод, но сфера их применения существенно ограничивается рабочими параметрами одного элемента. Решить недостатки единичной детали помогла диодная сборка из нескольких, существенно отличающихся характеристиками и принципом работы.

Устройство и принцип работы

Диодный мост представляет собой электронную схему, собранную на основе выпрямительных диодов, который предназначен для преобразования подаваемого на него переменного тока в постоянный. Чаще всего в состав схемы включаются диоды Шоттки, но это не категоричное требование, поэтому в каком-либо конкретном случае может заменяться и другими моделями, подходящими по техническим параметрам. Схема моста из полупроводниковых диодов включает в себя четыре элемента для одной фазы. Диодный мостик может набираться как отдельными диодами, так и собираться единым блоком, в виде монолитного четырехполюсника.

Принцип работы диодного моста основывается на способности p – n перехода пропускать электрический ток только в одном направлении. Схема включения диодов в мост построена таким образом, чтобы для каждой полуволны создавался свой путь протекания электрического тока к подключенной нагрузке.

Рис. 1. Принцип работы диодного моста

Для пояснения выпрямления диодным мостом необходимо рассматривать работу схемы относительно формы напряжения на входе. Следует отметить, что кривая напряжения за один период имеет две полуволны – положительную и отрицательную. В свою очередь, каждая полуволна имеет процесс нарастания и убывания по отношению к максимальной точке амплитуды.

Поэтому работа выпрямительного устройства будет иметь такие этапы:

  • На вход выпрямительного моста, обозначенного буквами А и Б подается переменное напряжение 220В.
  • Каждая полуволна, подаваемая из электрической сети или от обмоток трансформатора, преобразуется в постоянную величину парой диодов, расположенных по диагонали.
  • Положительная полуволна будет проводиться парой диодов VD1 и VD4 и выдавать на выход моста полуволну в положительной области оси ординат.
  • Отрицательная полуволна будет выпрямляться парой диодов VD2 и VD3, с которых на том же выходе моста возникнет очередная полуволна в положительной области.

В связи с тем, что оба полупериода получают реализацию на выходе диодного моста, такое электронное устройство получило название двухполупериодного выпрямителя, также его называют схемой Гретца.

Обозначение на схеме и маркировка

На электрической схеме диодный мост может иметь различные варианты изображения. Чаще всего вы можете встретить такие обозначения:

Рис. 2. Обозначение на схеме

Первый вариант обозначения мостового выпрямителя используется, как правило, в тех ситуациях, когда электронный прибор представляет собой монолитную конструкцию, единую сборку. На схеме маркировка выполняется латинскими буквами VD, за которыми указывается порядковый номер.

Второй вариант наиболее распространен для тех ситуаций, когда диодный мост состоит из отдельных полупроводниковых устройств, собранных в одну схему. Маркировка второго варианта, чаще всего, выполняется в виде ряда VD1 – VD4.

Следует также отметить, что вышеприведенное схематическое обозначение и маркировка хоть и имеет общепринятый характер, но может нарушаться при составлении схем.

Разновидности диодных мостов

В зависимости от количества фаз, которые подключаются к диодному мосту, различают однофазные и трехфазные модели. Первый вариант мы детально рассмотрели на примере схемы Гретца выше.

Трехфазные выпрямители, в свою очередь, разделяются на шести- и двенадцатипульсовые модели, хотя схема диодного моста у них идентична. Рассмотрим более детально работу диодного устройства для трехфазной схемы.

Рис. 3. Схема трехфазного диодного моста

Диодный мост, приведенный на рисунке выше, получил название схемы Ларионова. Конструктивно для каждой из фаз устанавливается сразу два диода в противоположном направлении друг относительно друга. Здесь важно отметить, что синусоида во всех трех фазах имеет смещение в 120° друг относительно друга, поэтому на выходах устройства при наложении результирующей диаграммы получится следующая картина:

Рис. 4. Напряжение выпрямленное трехфазным мостом

Как видите, в сравнении с однофазным выпрямителем на базе диодного моста картина получается более плавной, а скачки напряжения имеют значительно меньшую амплитуду.

Технические характеристики

При выборе конкретного диодного моста для замены в выпрямительном блоке или для любой другой схемы важно хорошо ориентироваться в основных технических параметрах.

Среди таких характеристик наиболее значимыми для диодного моста являются:

  • Амплитудное максимальное напряжение обратной полярности – это пороговое значение более которого уже произойдет необратимый процесс и полупроводник выйдет со строя. Обозначается как UАобр в отечественных моделях или V­rpm для зарубежных.
  • Среднее обратное напряжение – представляет собой номинальное значение электрической величины, которое может прикладываться в процессе эксплуатации. Имеет обозначение Uобр в отечественных образцах или V­r(rms) для зарубежных диодных мостов.
  • Средний выпрямленный ток – обозначает действующую величину электрического тока на выходе диодного моста. На устройствах указывается как Iпр или Io для моделей отечественного или зарубежного производства соответственно.
  • Амплитудный выпрямленный ток – это максимальный ток на выходе выпрямителя, определяемый пиком полуволны на кривой, обозначается как Ifsm для пульсирующего тока на положительном и отрицательном выводе.
  • Падение напряжения в прямой полярности – определяет потерю напряжения от собственного сопротивления диодного моста. На устройстве обозначается как V­fm.

Если вы хотите выбрать модель на замену, допустим в сети 220 В, то главный параметр для диодного моста обратный ток и напряжение. Рабочие характеристики должны значительно превышать номинал сети, к примеру, при напряжении 220 В – диодный мост должен выдерживать около 400 В. По току подойдет и меньший запас, но его также следует предусмотреть.

Преимущества и недостатки

Кроме диодного моста существуют и другие способы преобразования переменного в постоянный ток. В сравнении с однополупериодным, двухполупериодное выпрямление обладает рядом преимуществ:

  • И отрицательная, и положительная полуволна синусоиды преобразуются в выходное напряжение, поэтому вся мощность трансформатора используется в наиболее оптимальной степени.
  • За счет большей частоты пульсации получаемое от диодного выпрямителя напряжение куда проще сглаживать при помощи фильтров.
  • Использование электроэнергии под нагрузкой уменьшает потери мощности на перемагничивание сердечника, возникающее из-за процессов взаимоиндукции в обмотках питающего трансформатора.
  • Гармоничное перераспределение кривой электротока и напряжения на выходе – за счет передачи каждого полупериода сразу двумя диодами в мосте, выходной параметр получается куда более равномерным.

К недостаткам диодного моста следует отнести и большее падение напряжения, в сравнении с однополупериодной схемой или выпрямителем с отводом из средней точки. Это обусловлено тем, что ток протекает сразу черед два полупроводниковых элемента и встречает омическое сопротивление от каждого из них. Такой недостаток может оказывать существенное влияние в слаботочных цепях, где доли ампера могут решать значение сигналов, режимы работы агрегатов и т.д. В качестве решения могут применяться диодные мосты с диодами Шотки, у которых падение прямого напряжения относительно ниже.

Еще одним недостатком является сложность определения перегоревшего звена, так как при выходе со строя хотя бы одного диода вся схема будет продолжать работать. Понять, что один из полупроводниковых элементов выпал из цепи можно лишь с помощью измерений, далеко не всегда прибор или схема отреагируют при сбое видимой неисправностью.

Практическое применение

На практике диодный мост имеет довольно широкий спектр применения – это и цифровая техника, блоки питания в персональных компьютерах, ноутбуках, различных устройствах, автомобильных генераторах, питающихся от низкого постоянного напряжения. Помимо этого их можно встретить в системах звуковоспроизведения, измерительной техники, теле- радиовещания, они устанавливаются в ряде различных устройств по всему дому. Для лучшего понимания роли диодного моста в этих приборах мы рассмотрим несколько конкретных схем, в которых он применяется.

Примеры схем с диодным мостом и их описание

Одна из наиболее простых схем с применением диодного моста – это зарядное устройство, применяемое для оборудования, питаемого низким напряжением. Один из таких вариантов рассмотрим на следующем примере

Рис. 5. Схема зарядного устройства

Как видите на рисунке, от понижающего трансформатора Т1 напряжение из переменного 220В преобразуется в переменное на уровне 7 – 9В. После этого пониженное напряжение подается на диодный мост VD, от которого выпрямленное через сглаживающий конденсатор С1 на микросхему КР. От микросхемы выпрямленное напряжение стабилизируется и выдается на клеммы разъема.

Рис. 6. Схема карманного фонаря

На рисунке выше приведен пример схемы карманного фонаря, данная модель подключается к бытовой сети 220В через розетку, что представлено соединением разъема Х1 и Х2. Далее напряжение подается на мост VD, а с него уже на микросхему DA1, которая при наличии входного питания сигнализирует об этом через светодиод HL1. После этого напряжение питания приходит на аккумулятор GB, который заряжается и затем используется в качестве основного источника питания для лампы фонарика.

Пример схемы сварочного агрегата

Здесь представлен пример схемы сварочного агрегата, в котором диодный мост устанавливается сразу после понижающего трансформатора для выпрямления электрического тока. Из-за сложности схемы дальнейшее рассмотрение работы устройства нецелесообразно. Стоит отметить, что существуют и другие устройства с еще более сложным принципом работы – импульсные блоки питания, ШИМ модуляторы, преобразователи и т.д.

Источник:
http://www.asutpp.ru/diodnyy-most.html

Диодный мост: схема подключения и назначение

В электротехнике существует несостыковка. С одной стороны, передавать энергию на большие расстояния удобнее, если она имеет форму переменного напряжения. С другой, для питания смартфонов, светодиодов в лампочках, плат в телевизорах и подобной бытовой техники требуется постоянный ток. Данную проблему успешно решает такое семейство радиодеталей, как выпрямительные диоды.

Что такое диоды

Диод – это полупроводниковый элемент на основе кристалла кремния. Ранее эти детали также изготавливались из германия, но со временем этот материал был вытеснен из-за своих недостатков. Электрический диод функционирует как клапан, т.е. он пропускает ток в одном направлении и блокирует его в другом. Такие возможности в эту деталь заложены на уровне атомарного строения его полупроводниковых кристаллов.

Один диод не может получить из переменного напряжения полноценное постоянное. Поэтому на практике используют более сложные сочетания этих элементов. Сборка из 4 или 6 деталей, объединённых по специальной схеме, образует диодный мост. Он уже вполне способен справиться с полноценным выпрямлением тока.

Интересно. Диоды обладают паразитной чувствительностью к температуре и свету. Прозрачные выпрямители в стеклянном корпусе могут использоваться как датчики освещённости. Германиевые диоды (прим. Д9Б) подходят в качестве термочувствительного элемента. Собственно из-за сильной зависимости свойств этих элементов от температуры их и перестали производить.

Однофазный и трёхфазный диодный мост

Существует две основные разновидности выпрямляющих сборок:

  • Однофазный мост. Чаще используется в бытовых электроприборах. Имеет 4 вывода. На два их них подаётся переменное напряжение, т.е. фаза (L) и ноль (N). С двух оставшихся снимается постоянное, т.е. плюс (+) и минус (-).
  • Трёхфазный мост. Встречается в мощных промышленных установках и оборудовании, питающимся от сети 380 вольт. На его вход подаются три фазы (L1, L2, L3). С выхода так же снимается постоянное напряжение. Такие мосты отличаются большими размерами и внушительными токами, которые они способны через себя пропустить.

Принцип работы диодного моста

Понять, как мост выполняет свою задачу, можно, разобравшись в том, как ведёт себя отдельный диод. Изначально имеются только два провода с переменным напряжением (L и N). Оно имеет форму синусоиды (рис. а). Если в схему добавить один диод, то он будет пропускать только положительную полуволну (рис. б), если этот компонент развернуть, то отрицательную составляющую (рис. в). Такое напряжение уже не будет переменным. Всё же оно не годится для питания серьёзных электроприборов. В нём наблюдаются моменты, когда ток совсем отсутствует. Применение четырёх диодов позволит получить постоянное напряжение без всяких прерываний (рис. г). Трёхфазные мосты выпрямляют по такому же методу. Однако они делают это одновременно с тремя синусоидами.

Выпрямитель

Полученное после диодного моста напряжение имеет форму синусоиды, у которой отрицательная составляющая отражена относительно оси времени. Проще говоря, оно имеет форму холмов и называется пульсирующим. Такое напряжение положительное. Не содержит моментов, когда ток не течёт. Но всё же оно нестабильное. Например, в точке «a» оно рано 0 вольт, а в «b» – имеет максимальное значение. Данный выпрямитель нельзя считать законченным.

Для решения этой проблемы требуется сглаживающий электролитический конденсатор. На плате он обычно располагается там же, где и диодная сборка. Ёмкость накапливает энергию в те моменты, когда она имеет пиковые значения (точка b), и отдаёт её в моменты провалов (a). На выходе получается прямая линия – полноценный постоянный ток, пригодный для питания последующих электронных компонентов, процессоров, микросхем и т.п.

Читайте также  Съемник масляного фильтра: какой лучше выбрать?

Преимущества двухполупериодного диодного моста

Полный мост, также называемый двухполупериодным выпрямителем, по ряду характеристик лучше, чем просто одиночный диод. Объясняется это тем, что он даёт возможность:

  1. снизить подмагничивание трансформатора, после которого стоит двухполупериодный выпрямитель;
  2. снять с выхода напряжение с удвоенной частотой, которое в итоге проще сгладить;
  3. повысить КПД трансформатора, на вторичной обмотке которого установлен полный диодный мост.

Недостатки полного моста

У полноценного двухполупериодного моста имеются недостатки:

  1. Ток вынужден протекать не по одному диоду, а сразу по двум, включенным последовательно. Поэтому удваивается падение напряжения на выпрямительном элементе. Для маломощных мостов на кремниевых диодах оно может достигать 2 вольт. В мощных выпрямителях – порядка 10 В. Отсюда существенные потери мощности на выпрямляющем элементе и его повышенный нагрев.
  2. При выходе из строя одного и четырёх диодов мост продолжает работать. Данный дефект может быть незаметен без специальных замеров. Однако он создаёт риск более серьёзной поломки устройства, которое питается через неисправный мостик.

Конструкция

Схема любого выпрямительного моста включает в себя диоды. Они могут быть по отдельности распаяны на печатную плату или находиться в одном корпусе. Касаемо размера выпрямители бывают миниатюрными, например, импортные MB6S или советские КЦ405А. Последние в народе именуют «ка-цэшками» или «шоколадками».

Встречаются образцы с внушительными габаритами. Например, трёхфазный выпрямительный мост китайского производства. Прибор предназначен для токов в сотни ампер, поэтому имеет винтовой крепёж под силовые провода и плоскую металлическую теплопроводящую поверхность с отверстиями для фиксации на радиаторе охлаждения.

Маркировка выпрямителей

Не существует общепринятых правил, согласно которым производители маркируют свои диодные мосты. Каждый вправе называть своё изделие так, как считает нужным, т.е. по своей собственной номенклатуре.

Однако у большинства из этих деталей есть схожие признаки, помогающие визуально определить назначение их выводов. На фото трёхфазного моста (см. выше) отдельно выделен символ переменного тока – волнистая линия. Он указывает на то, что к этому контакту подключается входное синусоидальное напряжение. Также на некоторых моделях мостиков входные выводы помечаются буквами AC (Alternative Current), указывающими на переменный ток. При этом выходные контакты, с которых снимается постоянный ток, обозначаются символами DC (Direct Current) или традиционными «+» и «-». Дополнительно на некоторых выпрямителях со стороны плюса «подпилен» один из углов. Также на «+» может указывать и удлинённый вывод. Подобная маркировка свойственна многим электронным компонентам и называется ключом.

Диодный мостик своими руками

Чтобы самостоятельно собрать выпрямитель, понадобится 4 однотипных диода. При этом они должны подходить по обратному напряжению, максимальному току и рабочей частоте. Соединения нужно сделать в соответствии со схемой ниже. Между двумя катодами снимается положительное напряжение, между анодами – отрицательное. К точкам, в которых подключены разноимённые выводы диодов, подсоединяется источник переменного напряжения. Всю схему можно за пару минут спаять навесным монтажом или потрудиться и выполнить в виде небольшой печатной платы.

Дополнительная информация. Обратные напряжения диодов, включенных в последовательную цепь, складываются между собой.

Выбор типа сборки

Для каждой задачи существует свой оптимальный вариант выпрямительной диодной сборки. Все их можно условно разделить на 3 вида:

  • Выпрямитель на одном диоде. Применяется в самых простых и дешёвых схемах, где нет к.л. требований к качеству выходного напряжения, как, например, в ночниках.
  • Сдвоенный диод. Эти детали внешне похожи на транзисторы, ведь они выпускаются в таких же корпусах. Они также имеют 3 вывода. По сути, это два диода, помещённых в один корпус. Один из выводов – средний. Он может быть общим катодом или анодом внутренних диодов.
  • Полноценный диодный мост. 4 детали в одном корпусе. Подходит для устройств с большими токами. Применяется в основном на входах и выходах различных блоков питания и зарядных устройств.

Дополнительная информация. Выпрямители используются и в автомобилях. Они нужны для преобразования идущего с генератора переменного напряжения в постоянное. Оно, в свою очередь, необходимо для зарядки аккумулятора. Обычный бензогенератор вырабатывает переменный ток.

Проверка элементов

В большинстве случаев для проверки выпаивать мостик из платы не требуется. Тестировать его следует точно так же, как 4 p-n перехода с подключением по схеме диодного моста. Данное измерение настолько распространено, что его возможность реализована в любом мультиметре. Прибор для теста нужно переключить в режим диодной прозвонки.

Падение напряжения в прямом направлении на исправном выпрямительном диоде составляет 500-700 мВ. В обратном – прибор отобразит «1». Сгоревшая деталь чаще всего показывает в обоих направлениях «0», т.е. короткое замыкание. Реже бывает полный обрыв элемента (также в обе стороны). Все замеры следует повторить для каждого входящего в состав моста диода. Итого 8 измерений, т.е. 4 в прямом направлении и 4 – в обратном. Если тестируется диод Шоттки, то этот параметр составляет 200-400 мВ.

Использование барьера Шоттки

Применение диода Шоттки оправдано в двух случаях. Во-первых, когда нужно выпрямить высокочастотный ток. Барьер Шоттки идеально подходит для подобной задачи, ведь он имеет низкую ёмкость перехода и, соответственно, является быстродействующим. Во-вторых, когда требуется выпрямить большой ток в десятки или сотни ампер. В этом случае деталь отлично себя показывает ввиду низкого падения напряжения и малого тепловыделения.

Диодные мосты в мире электроники играют роль согласующего элемента. С их помощью можно подключать устройства, требующие постоянный ток, к сети удобного для передачи переменного напряжения. Подобных устройств очень много в быту, они крайне важны для комфортной жизни человека.

Источник:
http://amperof.ru/teoriya/diodnyj-most-sxema.html

Диодный мост: назначение, схема, реализация

Подавляющее большинство электронной аппаратуры работает на постоянном токе. А источником напряжения может быть как гальванический элемент, так и городская сеть переменного ток 220 В. Вот и приходится переменный ток преобразовывать в постоянный, то есть – «выпрямлять». Для этой цели служит устройство под названием выпрямитель. Это может быть готовый промышленный компонент, а может быть электронная схема, собранная из отдельных, более простых, элементов. Сегодня разберём, что же такое диодный мост, зачем он нужен и как работает.

Что такое диодный мост и зачем нужен

Переменный ток в бытовой электросети по синусоидальному закону меняет свою полярность 50 раз в секунду. Диодный мост, собранный из четырёх диодов, 25 раз в секунду пропускает одну положительную полуволну. То есть, превращает ток переменного знака амплитудой, имеющей колебательный характер, в ток одного знака, но с удвоенной частотой колебаний амплитуды. Если потребителя это не устраивает, то после выпрямителя ставится сглаживающий фильтр. Ниже представлена принципиальная электрическая схема диодного моста-выпрямителя.

Диодный мост можно собрать из отдельных конструктивно законченных диодов, но можно в промышленных условиях сразу изготовить из кристаллов в виде цельного изделия, пригодного к дальнейшей установке в электронную схему. Такая диодная сборка имеет технологические преимущества над предыдущим вариантом. Она компактней, монтаж моста надёжней, стоимость существенно ниже, чем у четырёх диодов.

ФОТО: youtube.com Диодный мост, собранный из четырёх диодов

ФОТО: youtube.com Диодный мост в виде одного изделия

Принцип работы

Диодный мост представляет собой электрическую схему из четырёх диодов. Схема построена таким образом, что в каждый полупериод переменного тока соответствующая полуволна проходит по одному плечу моста, в другой полупериод другая полуволна проходит по другому плечу. Но в точках моста, где диоды соединены одинаковой полярностью, знак тока всегда один и тот же.

Основные характеристики

И отдельные диоды, и промышленные диодные сборки описываются стандартным набором технических характеристик:

  • это напряжение обратной полярности, которое можно, не опасаясь пробоя, приложить к устройству;
  • величина тока обратной полярности, который безопасно можно пропустить по устройству;
  • длительность протекания тока по устройству без его перегрева;
  • максимальная температура устройства, при которой оно сохраняет свою работоспособность;
  • максимальная допустимая частота проходящего тока.

ФОТО: go-radio.ru Вариант изображения моста на принципиальной электрической схеме

ФОТО: go-radio.ru Сборка «Диодный мост» на печатной плате

Схема диодного моста

И самодельный мост, и промышленная диодная сборка изготавливаются по одной и той же схеме. Два диода последовательно спаиваются разноимёнными полюсами. Потом две пары спаивают одноимёнными полюсами на концах этих пар. К точкам соединения разноимённых полюсов подключается источник переменного напряжения, к точкам соединения одноимённых полюсов подключают нагрузку.

Диодные мосты применяются для выпрямления однофазного и трёхфазного тока.

Однофазный выпрямитель

Этот выпрямитель применяется в бытовой электронной технике чаще всего, так как бытовая электросеть однофазная. Как правило, пульсации выпрямленного тока с частотой 100 Гц не годятся для нормальной работы аппаратуры, появится неприятный звуковой фон – гудение. После выпрямителя следует ставить качественный сглаживающий фильтр из катушки индуктивности (последовательно) и конденсатора достаточной ёмкости (параллельно выходу выпрямителя).

Трёхфазный выпрямитель

Трёхфазные выпрямители на выходе дают меньшую частоту пульсаций, чем однофазные. Понижаются требования к сглаживающим фильтрам.

Схемы выпрямителей для трёхфазных цепей бывают однотактные и двухтактные. В однотактной схеме к каждой обмотке трёхфазного трансформатора подключается минус диода. Свободные концы каждой из трёх катушек соединяются в общую точку. Плюсы диодов тоже соединяются в одну точку. Нагрузка подключается между этими двумя общими точками.

ФОТО: electricalschool.info Принципиальная схема однотактного трёхфазного моста-выпрямителя

Если требуется выходное напряжение более высокого значения, а пульсации поменьше, то собирается двухтактна схема. Собираются три пары диодов, в каждой паре плюсовой вывод одного подключается к минусу другого. Плюсовые выводы трёх пар тоже собираются в одну точку, так же объединяются минусы диодов, а общие точки в каждой паре диодов подключаются к свободным концам трёх обмоток вторичной обмотки трансформатора. Нагрузка подключается между общим минусом и плюсом сборки. В такой схеме выходное напряжение несколько выше, а пульсации намного меньше. Иногда можно обойтись без сглаживающего фильтра. Такая схема имеет название «Мостовой трёхфазный выпрямитель Ларионова».

ФОТО: electricalschool.info Принципиальная схема двухтактного трёхфазного моста-выпрямителя

Где применяется схема диодного моста

Кстати, автомобильный генератор тоже выдаёт переменный ток, а всё электрооборудование автомобиля работает на постоянном токе. После генератора установлен мощный диодный выпрямитель. Мостовая схема диодного выпрямителя широко применяется в бытовой радиоаппаратуре – радиоприёмниках, телевизорах, всевозможных магнитофонах и проигрывателях. Диодные мосты ставят и в трансформаторных, и в импульсных блоках питания.

Как сделать диодный мост своими руками

При необходимости и при наличии нужных диодов и паяльника нетрудно собрать диодный мост своими руками.

Что нужно для работы

Для работы нужно подготовить рабочее место с розеткой для паяльника, паяльник с подставкой, припой, канифоль, пинцет, маленькие кусачки. Конечно, нужны диоды с нужными характеристиками. При большом желании мост можно собрать на печатной плате с готовыми дорожками.

Источник:
http://homius.ru/diodnyj-most-shema.html

Диодный мост

Схема диодного моста

Одной из важнейших частей электронных приборов питающихся от сети переменного тока 220 вольт является так называемый диодный мост. Диодный мост – это одно из схемотехнических решений, на основе которого выполняется функция выпрямления переменного тока.

Как известно, для работы большинства приборов требуется не переменный ток, а постоянный. Поэтому возникает необходимость в выпрямлении переменного тока.

Например, в составе блока питания, о котором уже заходила речь на страницах сайта, присутствует однофазный полномостовый выпрямитель – диодный мост. На принципиальной схеме диодный мост изображается следующим образом.


Схема диодного моста

Это так называемый однофазный выпрямительный мост, один из нескольких типов выпрямителей, которые активно применяются в электронике. С его помощью производят двухполупериодное выпрямление переменного тока.

В железе это выглядит следующим образом.


Диодный мост из отдельных диодов S1J37

Схему эту придумал немецкий физик Лео Гретц, поэтому данное схемотехническое решение иногда называют «схема Гретца» или «мост Гретца». В электронике данная схема применяется в настоящее время повсеместно. С появлением дешёвых полупроводниковых диодов эту схему стали применять всё чаще и чаще. Сейчас ею уже никого не удивишь, но в эпоху радиоламп «мост Гретца» игнорировали, поскольку она требовала применения аж 4 ламповых диодов, которые стоили по тем временам довольно дорого.

Как работает диодный мост?

Пару слов о том, как работает диодный мост. Если на его вход (обозначен значком «

») подать переменный ток, полярность которого меняется с определённой частотой (например, с частотой 50 герц, как в электросети), то на выходе (выводы «+» и «-») мы получим ток строго одной полярности. Правда, этот ток будет иметь пульсации. Частота их будет вдвое больше, чем частота переменного тока, который подаётся на вход.

Таким образом, если на вход диодного моста подать переменный ток электросети (частота 50 герц), то на выходе получим постоянный ток с пульсациями частотой 100 герц. Эти пульсации нежелательны и могут в значительной степени помешать работе электронной схемы.

Чтобы «убрать» пульсации необходимо применить фильтр. Простейший фильтр – это электролитический конденсатор достаточно большой ёмкости. Если взглянуть на принципиальные схемы блоков питания, как трансформаторных, так и импульсных, то после выпрямителя всегда стоит электролитический конденсатор, который сглаживает пульсации тока.

Читайте также  Метод трех проволочек

Обозначение диодного моста на схеме.

На принципиальных схемах диодный мост может изображаться по-разному. Взгляните на рисунки ниже – всё это одна и та же схема, но изображена она по-разному. Думаю, теперь взглянув на незнакомую схему, вы с лёгкостью обнаружите его.

Диодная сборка.

Диодный мост во многих случаях обозначают на принципиальных схемах упрощённо. Например, вот так.

Обычно, такое изображение либо служить для того, чтобы упростить вид принципиальной схемы, либо для того, чтобы показать, что в данном случае применена диодная выпрямительная сборка.

Сборка диодного моста (или просто диодная сборка) – это 4 одинаковых по параметрам диода, которые соединены по схеме мостового выпрямителя и запакованы в один общий корпус. У такой сборки 4 вывода. Два служат для подключения переменного напряжения и обозначаются значком «

». Иногда могут иметь обозначение AC (Alternating Current — переменный ток).

Оставшиеся два вывода имеют обозначения « + » и « — ». Это выход выпрямленного, пульсирующего напряжения (тока).

Диодная сборка выпрямительного моста является более технологичной деталью. Она занимает меньше места на печатной плате. Для робота-сборщика на заводе проще и быстрее установить одну монолитную деталь вместо четырёх. Ещё одним из плюсов такой сборки можно считать то, что при работе все диоды внутри неё находятся в одном тепловом режиме.

Также стоит отметить и то, что сборки, порой, стоят дешевле, чем четыре отдельных диода. Но и в бочке мёда должна быть ложка дёгтя. Минус диодных сборок в том, что если выходит из строя хотя бы один диод, то менять её придётся полностью. Поэтому не лишним будет научиться проверять диодный мост мультиметром.

Думаю понятно, что в случае отдельных диодов нужно просто заменить один неисправный диод, что, соответственно, обойдётся дешевле.

В реальности сборка диодного моста может выглядеть вот так.


Диодная сборка KBL02 на печатной плате


Диодная сборка RS607 на плате компьютерного блока питания

А вот так выглядит диодная сборка DB107S для поверхностного (SMD) монтажа. Несмотря на свои малые размеры, сборка DB107S выдерживает прямой ток 1 A и обратное напряжение в 1000 V.

Более мощные выпрямительные диодные мосты требуют охлаждения, так как при работе они сильно нагреваются. Поэтому их корпус конструктивно выполнен с возможностью крепления на радиатор. На фото – диодный мост KBPC2504, рассчитанный на прямой ток 25 ампер.

Естественно, любую мостовую сборку можно заменить 4-мя отдельными диодами, которые соответствуют нужным параметрам. Это бывает необходимо, когда нужной сборки нет под рукой.

Иногда это вводит новичков в замешательство. Как же правильно соединить диоды, если предполагается изготовление диодного моста из отдельных диодов? Ответ изображён на следующем рисунке.


Условное изображение диодного моста и диодной сборки

Как видим всё довольно просто. Чтобы понять, как нужно соединить диоды, нужно вписать в стороны ромба изображение диода.

На принципиальных схемах и печатных платах диодный мост могут обозначать по-разному. Если используются отдельные диоды, то рядом с ними просто указывается сокращённое обозначение – VD, а рядом ставиться его порядковый номер в схеме. Например, вот так: VD1VD4. Иногда применяется обозначение VDS. Данное обозначение указывается обычно рядом с условным обозначением выпрямительного моста. Буква S в данном случае подразумевает, что это сборка. Также можно встретить обозначение BD.

Где применяется схема диодного моста?

Мостовая схема активно применяется практически в любой электронике, которая питается от однофазной электросети переменного тока (220 V): музыкальных центрах, DVD-проигрывателях, кинескопных и ЖК-телевизорах. . Да где его только нет! Кроме этого, он нашёл применение не только в трансформаторных блоках питания, но и в импульсных. Примером импульсного блока питания, в котором применяется данная схема, может служить рядовой компьютерный блок питания. На его плате легко обнаружить либо выпрямительный мост из отдельных мощных диодов, либо одну диодную сборку.

Вы легко найдёте диодный мост на печатных платах электро-пускорегулирующих аппаратов (ЭПРА) или по-простому «балластах», а также в компактных люминесцентных лампах (КЛЛ).

В сварочных аппаратах можно обнаружить очень мощные диодные мосты, которые крепятся к теплоотводу. Это лишь несколько примеров того, где может применяться данное схемотехническое решение.

Источник:
http://go-radio.ru/diodniy%20most.html

Что такое диодный мост — простое объяснение

Подробно рассмотрены устройство, принцип работы и назначение диодного моста. Характеристики данного элемента и схемы выпрямителей. Как спаять и подключить диодный мост.

Мы рассматривали пассивные компоненты электронных схем, такие как резисторы и конденсаторы. Но кроме них электрикам и радиолюбителям приходится сталкиваться и с другими, например полупроводниковыми диодами, стабилитронами и т.д. В этой статье мы расскажем, что такое диодный мост, как он работает и для чего нужен. Содержание:

  • Определение
  • Принцип действия
  • Основные характеристики
  • Схемы выпрямителей
  • Как спаять и подключить
  • Область применения и назначение
  • Способы проверки

Определение

Диодный мост – это схемотехническое решение, предназначенное для выпрямления переменного тока. Другое название – двухполупериодный выпрямитель. Строится из полупроводниковых выпрямительных диодов или их разновидности – диодов Шоттки.

Мостовая схема соединения предполагает наличие нескольких (для однофазной цепи – четырёх) полупроводниковых диодов, к которым подключается нагрузка.

Он может состоять из дискретных элементов, распаянных на плате, но в 21 веке чаще встречаются соединенные диоды в отдельном корпусе. Внешне это выглядит, как и любой другой электронный компонент – из корпуса определенного типоразмера выведены ножки для подключения к дорожкам печатной платы.

Стоит отметить, что несколько совмещенных в одном корпусе вентилей, которые соединены не по мостовой схеме, называют диодными сборками.

В зависимости от сферы применения и схемы подключения диодные мосты бывают:

Обозначение на схеме может быть выполнено в двух вариантах, какое использовать УГО на чертеже зависит от того, собирается мост из отдельных элементов или используется готовый.

Принцип действия

Давайте разбираться, как работает диодный мост. Начнем с того, что диоды пропускают ток в одном направлении. Выпрямление переменного напряжения происходит за счет односторонней проводимости диодов. За счет правильного их подключения отрицательная полуволна переменного напряжения поступает к нагрузке в виде положительной. Простыми словами – он переворачивает отрицательную полуволну.

Для простоты и наглядности рассмотрим его работу на примере однофазного двухполупериодного выпрямителя.

Принцип работы схемы основам на том, что диоды проводят ток в одну сторону и состоит в следующем:

    На вход диодного моста подают переменный синусоидальный сигнал, например 220В из бытовой электросети (на схеме подключения вход диодного моста обозначается как AC или

).

  • Каждая из полуволн синусоидального напряжения (рисунок ниже) пропускается парой вентилей, расположенных на схеме по диагонали.
  • Положительную полуволну пропускают диоды VD1, VD3, а отрицательную — VD2 и VD4. Сигнал на входе и выходе схемы вы видите ниже.

    Такой сигнал называется – выпрямленное пульсирующее напряжение. Для того, чтобы его сгладить, в схему добавляется фильтр с конденсатором.

    Основные характеристики

    Рассмотрим основные характеристики полупроводниковых диодов. Латинскими буквами приведено их обозначение в англоязычной технической документации (т.н. Datasheet):

    • Vrpm – пиковое или максимальное обратное напряжение. При превышении этого напряжения pn-переход необратимо разрушается.
    • Vr(rms) – среднее обратное напряжение. Нормальное для работы, то же что и Uобр в характеристиках отечественных компонентов.
    • Io – средний выпрямленный ток, то же что и Iпр у отечественных.
    • Ifsm – пиковый выпрямленный ток.
    • Vfm – падение напряжения в прямом смещении (в открытом проводящем состоянии) обычно 0.6-0.7В, и больше у высокотоковых моделей.

    При ремонте электронной техники и блоков питания или их проектировании новички спрашивают: как правильно выбрать диодный мост?

    В этом случае самыми важными для вас параметрами будут обратное напряжение и ток. Например, чтобы подобрать диодный мост на 220В, нужно смотреть на модели с номинальным напряжением больше 400В и нужный ток, например, KBPC106 (или 108, 110). Его технические характеристики:

    • максимальный выпрямленный ток – 3А;
    • пиковый ток (кратковременно) – 50А;
    • обратное напряжение – 600В (800В, 1000В у KBPC108 и 110 соответственно).

    Запомните эти характеристики и вы легко сможете определить, какой выбрать вариант по каталогу.

    Схемы выпрямителей

    Выпрямление тока в блоках питания – основное назначение, среди других компонентов схемы можно выделить входной фильтр, который подключают после выпрямителя – он предназначен для сглаживания пульсаций. Давайте разберемся в этом вопросе подробнее!

    В первую очередь стоит отметить, что диодным мостом называют схему однофазного выпрямителя из 4 диодов или трёхфазного из 6. Но любители часто так называют схему выпрямителя со средней точкой.

    У двухполупериодного выпрямителя к нагрузке поступает две полуволны, а у однополупериодного – одна.

    Чтобы не было путаницы, давайте разбираться в терминологии.

    Ниже вы видите однофазную двухполупериодную схему, её правильное название «Схема Гретца», именно её чаще всего подразумевают под названием «диодный мост».

    Схема Ларионова – трёхфазный диодный мост, на выходе сигнал двухполупериодный. Диоды в нём пропускают полуволны, открываясь на линейное напряжение, т.е. поочередно: верхний диод фазы A и нижний диод фазы B, верхний фазы B и нижний фазы C и т.д.

    Для полноты картины следует рассказать и о других схемах выпрямителей переменного напряжения.

    Однополупериодный выпрямитель из 1 диода, включенного последовательно с нагрузкой. Применяется в балластных блоках питания, маломощных миниатюрных блоках питания, а также в приборах, нетребовательных к коэффициенту пульсаций. К нагрузке поступает только одна полуволна.

    Двухполупериодный со средней точкой – это и есть то, что ошибочно называют мостом из 2 диодов. Здесь каждую полуволну проводит только один диод. Её преимуществом является больший КПД, чем у схемы Гретца, за счет меньшего числа полупроводниковых вентилей. Однако её использование осложнено тем, что нужен трансформатор с отводом от средней точки, что отражено на схеме принципиальной. Её нельзя использовать для выпрямления сетевого напряжения 220В.

    Выпрямитель из сборок Шоттки. Используется в импульсных блоках питания, потому что у диодов Шоттки меньше время обратного восстановления, малая барьерная ёмкость (быстрее переход из открытого состояния в закрытое) и малое прямое падение напряжения (меньше потерь). Чаще всего Шоттки встречаются в сборках, с общим анодом или катодом, как изображено на рисунке ниже.

    Поэтому для сборки схемы моста потребуется несколько сборок. Ниже приведен пример из 3 сборок Шоттки с общим катодом.

    Из 4 сборок с общим катодом. Отличается от предыдущей тем, что выдерживает больший ток, при тех же компонентах потому, что Шоттки в ней соединены параллельно.

    Из 2 сборок Шоттки – одна с общим анодом и одна с общим катодом. Узнать о том, что такое анод и катод, вы можете в нашей отдельной статье.

    Как спаять и подключить

    Изучать и знать схемы не сложно, основные трудности возникают, когда новичок решает спаять диодный мост своими руками. Для пайки выпрямителя из 4 советских экземпляров типа кд202 используйте иллюстрацию приведенную ниже.

    Для сборки диодного моста из современных дискретных диодов типа маломощных 1n4007 (и других – все выглядят аналогично и отличаются только размерами) внимательно посмотрите на следующую иллюстрацию.

    Но если вы не собираете его из отдельных деталей, а используете готовый мост, то смотрите ниже, как правильно подключить его в цепь.

    Также новичкам будет интересно посмотреть видео о том, как сделать простейший блок питания на 12В:

    Область применения и назначение

    Чаще всего диодные мосты используют в блоках питания. В трансформаторных БП они подключаются ко вторичной обмотке трансформатора

    В импульсных БП – ко входу сети 220В. При этом электронная схема управления и силовая цепь ИБП питается от выпрямленного и сглаженного (не всегда) сетевого напряжения (достигает порядка 300-310 Вольт).

    На выводах вторичной обмотки импульсного блока питания высокочастотное переменное напряжение. Для того, чтобы его выпрямить, устанавливают сборки из сдвоенных диодов Шоттки. В связи с этим часто используют схему выпрямления со средней точкой.

    В автомобилях и мотоциклах используются трёхфазные диодные мосты, собранные по схеме Ларионова с тремя дополнительными вентилями, потому что для питания бортовой сети используется трёхфазный генератор. Мост в генераторе выполняется в виде сектора окружности и устанавливается на его задней части.

    Исключение составляют некоторые современные автомобили Toyota и прочих марок, в них используют 6 фазный генератор, для реализации двенадцатипульсной схемы выпрямления из 12 вентилей. Это нужно для снижения пульсации и увеличения выходного тока.

    Способы проверки

    Для проверки диодного моста лучше всего подходит мультиметр в режиме проверки диодов.

    Для этого нужно прозвонить на короткое замыкание входную, затем выходную (диодный мост должен быть выпаян).

    Читайте также  Типы и размеры скоб для строительного степлера: как выбрать нужный

    Не выпаивая прямо на плате, вы можете измерить падение напряжения на переходах диодов. Для этого нужно определить цоколевку моста, обычно она указывается прямо на корпусе, что мы и рассматривали выше.

    На экране мультиметра в прямом смещении должно отображаться цифры в пределах 500-800 мВ, а в обратном – выше 1500 и до бесконечности (зависит от конкретного компонента и измерительного прибора). Тоb же самое можно сделать в режиме Омметра, как показано на рисунке ниже.

    Более подробно этот процесс описан в статье «как проверить диодный мост», где кроме методики проверки мы рассказали и о признаках неисправности. Также ознакомьтесь с видео о том, как проверить однофазный выпрямитель и диодный мост автомобильного генератора:


    На этом мы и заканчиваем наше подробное объяснение. Надеемся, теперь вам стало понятно, для чего нужен диодный мост и что он делает в электрической цепи. Если возникли вопросы, задавайте их в комментариях под статьей!

    Материалы по теме:

    • Как выпаивать радиодетали из плат
    • Как пользоваться мультиметром — инструкция для чайников
    • Как понизить напряжение в сети

    Опубликовано: 20.02.2019 Обновлено: 20.02.2019 нет комментариев

    Источник:
    http://elektrik-sam.ru/baza-znanij/4139-chto-takoe-diodnyj-most-prostoe-objasnenie.html

    Устройство и работа выпрямительного диода. Диодный мост.

    18 Июн 2013г | Раздел: Радио для дома

    Здравствуйте уважаемые читатели сайта sesaga.ru. Продолжаем знакомиться с полупроводниковыми диодами. В предыдущей части статьи мы с Вами разобрались с принципом работы диода, рассмотрели его вольт-амперную характеристику и выяснили, что такое пробой p-n перехода.
    В этой части мы рассмотрим устройство и работу выпрямительных диодов.

    Выпрямительный диод – это полупроводниковый диод, предназначенный для преобразования переменного тока в постоянный. Однако, это далеко не полная область применения выпрямительных диодов: они широко используются в цепях управления и коммутации, в схемах умножения напряжения, во всех сильноточных цепях, где не предъявляется жестких требований к временным и частотным параметрам электрического сигнала.

    Общие характеристики выпрямительных диодов.

    В зависимости от значения максимально допустимого прямого тока выпрямительные диоды разделяются на диоды малой, средней и большой мощности:

    малой мощности рассчитаны для выпрямления прямого тока до 300mA;
    средней мощности – от 300mA до 10А;
    большой мощности — более 10А.

    По типу применяемого материала они делятся на германиевые и кремниевые, но, на сегодняшний день наибольшее применение получили кремниевые выпрямительные диоды ввиду своих физических свойств.

    Кремниевые диоды, по сравнению с германиевыми, имеют во много раз меньшие обратные токи при одинаковом напряжении, что позволяет получать диоды с очень высокой величиной допустимого обратного напряжения, которое может достигать 1000 – 1500В, тогда как у германиевых диодов оно находится в пределах 100 – 400В.

    Работоспособность кремниевых диодов сохраняется при температурах от -60 до +(125 — 150)º С, а германиевых – лишь от -60 до +(70 – 85)º С. Это связано с тем, что при температурах выше 85º С образование электронно-дырочных пар становится столь значительным, что происходит резкое увеличение обратного тока и эффективность работы выпрямителя падает.

    Технология изготовления и конструкция выпрямительных диодов.

    Конструкция выпрямительных диодов представляет собой одну пластину кристалла полупроводника, в объеме которой созданы две области разной проводимости, поэтому такие диоды называют плоскостными.

    Технология изготовления таких диодов заключается в следующем:
    на поверхность кристалла полупроводника с электропроводностью n-типа расплавляют алюминий, индий или бор, а на поверхность кристалла с электропроводностью p-типа расплавляют фосфор.

    Под действием высокой температуры эти вещества крепко сплавляются с кристаллом полупроводника. При этом атомы этих веществ проникают (диффундируют) в толщу кристалла, образуя в нем область с преобладанием электронной или дырочной электропроводностью. Таким образом получается полупроводниковый прибор с двумя областями различного типа электропроводности — а между ними p-n переход. Большинство распространенных плоскостных кремниевых и германиевых диодов изготавливают именно таким способом.

    Для защиты от внешних воздействий и обеспечения надежного теплоотвода кристалл с p-n переходом монтируют в корпусе.
    Диоды малой мощности изготавливают в пластмассовом корпусе с гибкими внешними выводами, диоды средней мощности – в металлостеклянном корпусе с жесткими внешними выводами, а диоды большой мощности – в металлостеклянном или металлокерамическом корпусе, т.е. со стеклянным или керамическим изолятором. Пример выпрямительных диодов германиевого (малой мощности) и кремниевого (средней мощности) показан на рисунке ниже.

    Кристаллы кремния или германия (3) с p-n переходом (4) припаиваются к кристаллодержателю (2), являющемуся одновременно основанием корпуса. К кристаллодержателю приваривается корпус (7) со стеклянным изолятором (6), через который проходит вывод одного из электродов (5).

    Маломощные диоды, обладающие относительно малыми габаритами и весом, имеют гибкие выводы (1) с помощью которых они монтируются в схемах.
    У диодов средней мощности и мощных, рассчитанных на значительные токи, выводы (1) значительно мощнее. Нижняя часть таких диодов представляет собой массивное теплоотводящее основание с винтом и плоской внешней поверхностью, предназначенное для обеспечения надежного теплового контакта с внешним теплоотводом (радиатором).

    Электрические параметры выпрямительных диодов.

    У каждого типа диодов есть свои рабочие и предельно допустимые параметры, согласно которым их выбирают для работы в той или иной схеме:

    Iобр – постоянный обратный ток, мкА;
    Uпр – постоянное прямое напряжение, В;
    Iпр max – максимально допустимый прямой ток, А;
    Uобр max – максимально допустимое обратное напряжение, В;
    Р max – максимально допустимая мощность, рассеиваемая на диоде;
    Рабочая частота, кГц;
    Рабочая температура, С.

    Здесь приведены далеко не все параметры диодов, но, как правило, если надо найти замену, то этих параметров хватает.

    Схема простого выпрямителя переменного тока на одном диоде.

    Разберем схему работы простейшего выпрямителя, которая изображена на рисунке:

    На вход выпрямителя подадим сетевое переменное напряжение, в котором положительные полупериоды выделены красным цветом, а отрицательные – синим. К выходу выпрямителя подключим нагрузку (), а функцию выпрямляющего элемента будет выполнять диод (VD).

    При положительных полупериодах напряжения, поступающих на анод диода диод открывается. В эти моменты времени через диод, а значит, и через нагрузку (), питающуюся от выпрямителя, течет прямой ток диода Iпр (на правом графике волна полупериода показана красным цветом).

    При отрицательных полупериодах напряжения, поступающих на анод диода диод закрывается, и во всей цепи будет протекать незначительный обратный ток диода (Iобр). Здесь, диод как бы отсекает отрицательную полуволну переменного тока (на правом графике такая полуволна показана синей пунктирной линией).

    В итоге получается, что через нагрузку (), подключенную к сети через диод (VD), течет уже не переменный, поскольку этот ток протекает только в положительные полупериоды, а пульсирующий ток – ток одного направления. Это и есть выпрямление переменного тока.

    Но таким напряжением можно питать лишь маломощную нагрузку, питающуюся от сети переменного тока и не предъявляющую к питанию особых требований, например, лампу накаливания.
    Напряжение через лампу будет проходить только во время положительных полуволн (импульсов), поэтому лампа будет слабо мерцать с частотой 50 Гц. Однако, за счет тепловой инертности нить не будет успевать остывать в промежутках между импульсами, и поэтому мерцание будет слабо заметным.

    Если же запитать таким напряжением приемник или усилитель мощности, то в громкоговорителе или колонках мы будем слышать гул низкого тона с частотой 50 Гц, называемый фоном переменного тока. Это будет происходить потому, что пульсирующий ток, проходя через нагрузку, создает в ней пульсирующее напряжение, которое и является источником фона.

    Этот недостаток можно частично устранить, если параллельно нагрузке подключить фильтрующий электролитический конденсатор (Cф) большой емкости.

    Заряжаясь импульсами тока во время положительных полупериодов, конденсатор () во время отрицательных полупериодов разряжается через нагрузку (). Если конденсатор будет достаточно большой емкости, то за время между импульсами тока он не будет успевать полностью разряжаться, а значит, на нагрузке () будет непрерывно поддерживаться ток как во время положительных, так и во время отрицательных полупериодов. Ток, поддерживаемый за счет зарядки конденсатора, показан на правом графике сплошной волнистой красной линией.

    Но и таким, несколько сглаженным током тоже нельзя питать приемник или усилитель потому, что они будут «фонить», так как уровень пульсаций (Uпульс) пока еще очень ощутим.
    В выпрямителе, с работой которого мы познакомились, полезно используется энергия только половины волн переменного тока, поэтому на нем теряется больше половины входного напряжения и потому такое выпрямление переменного тока называют однополупериодным, а выпрямители – однополупериодными выпрямителями. Эти недостатки устранены в выпрямителях с использованием диодного моста.

    Диодный мост.

    Диодный мост – это небольшая схема, составленная из 4-х диодов и предназначенная для преобразования переменного тока в постоянный. В отличие от однополупериодного выпрямителя, состоящего из одного диода и пропускающего ток только во время положительного полупериода, мостовая схема позволяет пропускать ток в течение каждого полупериода. Диодные мосты изготавливают в виде небольших сборок заключенных в пластмассовый корпус.

    Из корпуса сборки выходят четыре вывода напротив которых расположены знаки «+», «» или «

    », указывающие, где у моста вход, а где выход. Но не обязательно диодные мосты можно встретить в виде такой сборки, их также собирают включением четырех диодов прямо на печатной плате, что очень удобно.

    Например. Вышел из строя один из диодов моста, если будет стоять сборка, то ее смело выкидываем, а если мост будет собран из четырех диодов прямо на плате — меняем неисправный диод и все готово.

    На принципиальных схемах диодный мост обозначают включением четырех диодов в мостовую схему, как показано в левой части нижнего рисунка: здесь, диоды являются как бы плечами выпрямительного моста.
    Такое графическое обозначение моста можно встретить еще в старых журналах по радиотехнике. Однако, на сегодняшний день, в основном, диодный мост обозначают в виде ромба, внутри которого расположен значок диода, указывающий только на полярность выходного напряжения.

    Теперь рассмотрим работу диодного моста на примере низковольтного выпрямителя. В таком выпрямителе, с использованием четырех диодов, во время каждой полуволны работают поочередно два диода противоположных плеч моста, включенных между собой последовательно, но встречно по отношению ко второй паре диодов.

    Со вторичной обмотки трансформатора переменное напряжение поступает на вход диодного моста. Когда на верхнем (по схеме) выводе вторичной обмотки возникает положительный полупериод напряжения, ток идет через диод VD3, нагрузку , диод VD2 и к нижнему выводу вторичной обмотки (см. график а). Диоды VD1 и VD4 в этот момент закрыты и через них ток не идет.

    В течение другого полупериода переменного напряжения, когда плюс на нижнем (по схеме) выводе вторичной обмотки, ток идет через диод VD4, нагрузку , диод VD1 и к верхнему выводу вторичной обмотки (см. график б). В этот момент диоды VD2 и VD3 закрыты и ток через себя не пропускают.

    В результате мы видим, что меняются знаки напряжения на вторичной обмотке трансформатора, а через нагрузку выпрямителя идет ток одного направления (см. график в). В таком выпрямителе полезно используются оба полупериода переменного тока, поэтому подобные выпрямители называют двухполупериодными.

    И в заключении отметим, что работа двухполупериодного выпрямителя по сравнению с однопериодным получается намного эффективней:

    1. Удвоилась частота пульсаций выпрямленного тока;
    2. Уменьшились провалы между импульсами, что облегчило задачу сглаживания пульсаций на выходе выпрямителя;
    3. Среднее значение напряжения постоянного тока примерно равно переменному напряжению, действующему во вторичной обмотке трансформатора.

    А если такой выпрямитель дополнить фильтрующим электролитическим конденсатором, то им уже смело можно запитывать радиолюбительскую конструкцию.

    Ну вот, мы с Вами практически и закончили изучать диоды. Конечно, в этих статьях дано далеко не все, а только основные понятия, но этих знаний Вам уже будет достаточно, чтобы собрать свою радиолюбительскую конструкцию для дома, в которой используются полупроводниковые диоды.

    А в качестве дополнительной информации посмотрите видеоролик, в котором рассказывается, как проверить диодный мост мультиметром.

    1. Борисов В.Г — Юный радиолюбитель. 1985г.
    2. Горюнов Н.Н., Носов Ю.Р — Полупроводниковые диоды. Параметры, методы измерений. 1968г.
    3. Пасынков В.В., Чиркин Л.К — Полупроводниковые приборы: Учеб. для вузов по спец. «Полупроводники и диэлектрики» и «Полупроводниковые и микроэлектронные приборы» — 4-е изд. перераб. и доп. 1987г.

    Источник:
    http://sesaga.ru/ustrojstvo-i-rabota-vypryamitelnogo-dioda-diodnyj-most.html