Диоды для сварочного аппарата

Диоды для сварочного аппарата

Конструкция аппарата для проведения сварки «напичкана» разнообразными компонентами и узлами, которые приводят в действие основную «начинку» оборудования, и диодный мост сварочного полуавтомата является ведущим и связующим компонентом. Какую основную роль играет данный узел и компонент для технологического промышленного оборудования? Согласно общей терминологии, диоды для сварочного аппарата – это уникальный полупроводниковый элемент конструкции прибора, который функционирует по принципу традиционной схеме p-n-перехода. Главное предназначение такого узла, это преобразование входящего типа энергии, который имеет определённые характеристики в другой тип.

Диодный мост для сварочного аппарата

Какие типы устройства используются в сварочном оборудовании?

Сегмент элементов для технологического оборудования – сварочные силовые диоды представлены разнообразными вариантами, которые имеют уникальные характеристики и принципиальные значения для выполнения действия. Ниже приведём подробную спецификацию диодов для сварочного оборудования.

Главным критерием для всех типов диодных конструкций является значение силы тока. Согласно вышеописанной системе, предусмотрено разделение на такие виды диодов, вне зависимости от названия:

  • Малая мощность, с показателем до 3*102 ma;
  • Средний параметр мощности – 3*102 ma – 10А;
  • Максимальный показатель – от 10 Ампер.

Конструктивные особенности диодных мостов для сварочного оборудования

Заводские условия производства производственной аппаратуры предусматривают функциональное изготовление диодного моста для сварочного аппарата, которые подразделяются на точечный или плоскостной вариант применения.

В таблице, приведённой свыше можно отметить, что схема сварочного диодного моста также зависит от того, какой основной материал используется в технологии производства оборудования, в частности:

Диоды для сварочного полуавтомата

Предназначение функционального типа монтажа сварочных диодов трансформатора своими руками предусматривает реализацию таких принципиальных схем и характеристик работы устройства промышленного оборудования с использованием диодных компонентов:

  • Выпрямительный тип применения;
  • Импульсивное устройство;
  • Универсальный вариант исполнения;
  • Варикап;
  • Устройство с использованием стабилитрона;
  • Стабисторная технология;
  • Туннельный тип моста;
  • Обращённое возвратное исполнение;
  • Лавинно-пролётный диодный комплекс;
  • Тиристоры;
  • Фотодиодная система;
  • Точные светодиоды;
  • Оптроны.

Сборка конструкции осуществляется при наличии четырёх компонентов мощных сварочных диодов, которые имеют функциональный тип пропускать ток за определённый полупериод. Главная сущность любого диодного комплекса, это нормальное преобразование переменного тока входящего варианта исполнения в пульсирующую категорию.

Главная схематическая часть подключения диодов для сварочного аппарата ДЛ-132-80-10 заключается в следующем:

  • Два компонента расположены в общей схеме по последовательному принципу подсоединения, и имеют равную направленность друг к другу;
  • Два оставшихся компонента также подключены по последовательному варианту соединения, но направленность идёт друг от друга (то есть противоположный тип исполнения).

Первые два типа диодов осуществляют только положительную функцию переменного тока, а оставшиеся два типа – отрицательные компоненты, делая соответствующую обрезку.

Почему необходимо осуществлять доработку сварочного оборудования?

Как правило, диоды используют только в том случае, если необходимо осуществить какую-то доработку оборудования, при этом основными причинами переработки технологического оборудования являются:

  • Явные перебои в сети с напряжением. Аппараты с низкими характеристиками ,могут вообще не запуститься по причине сбоя напряжения в сети;
  • Диодный мост поможет улучшить качество сварного шва;
  • Можно упростить сложную задачу эффективного «зажжения» дуги при существующем номинальном или имеющемся минимальном типе напряжения;
  • Можно увеличить тепловые характеристики режима работы при долгосрочной эксплуатации сварочного оборудования;
  • Диодный мост улучшает параметры создания определённой степени электрической дуги.

Используя обычную схему диодного моста, вы добьётесь резкого снижения выпрямительного варианта напряжения, которое зависит, прежде всего, от повышенного режима тока нагрузки в момент запуска имеющейся дуги, тем самым будут затруднены сварочные работы.

Схема сварочного аппарата с диодным мостом

Проблему можно решить одним из способов – применяем электролитический конденсатор больших значений ёмкостных характеристик или производим полную замену принципиальной схемы устройства.

Лучшим вариантом для сборки является применение технологий по категориям диодов Д161 или В200. Даже если они имеют разные параметры проводимости монтаж можно производить без способа крепления при помощи шпилек. Модернизация образцового оборудования допускается только в том случае, если вы знаете принципиальные характеристики устройства и схемы их применения на практике.

Источник:
http://svarkaipayka.ru/oborudovanie/raznoe/diodyi-dlya-svarochnogo-apparata.html

Особенность сборки диодного моста для сварочного аппарата

Диод – это полупроводниковый прибор, который обладает различной проводимостью в зависимости от прикладываемого напряжения. Имеет всего два вывода: анод и катод. При подаче прямого напряжения (на анод подается положительный потенциал по сравнению с катодом) он открыт. При подаче отрицательного напряжения он закрывается.

Эта особенность прибора широко используется в электротехнике, в частности диодный мост применяют для сварочного аппарата, чтобы выпрямлять переменный ток, улучшая качество сварки.

Основные характеристики

Главными параметрами, на которые обращают внимание при выборе выпрямителей для сварочных аппаратов, являются:

  • максимально допустимое постоянное обратное напряжение;
  • максимальный средний прямой ток за период;
  • рабочая частота переключения;
  • постоянное прямое напряжение при максимальном прямом токе;
  • максимально допустимая температура корпуса.

Амплитуда бытовой сети составляет около 310 В, поэтому нужно использовать диоды с обратным напряжением 400 В и выше. Прямой ток жестко связан с мощностью прибора, и на него также обращают внимание. Рабочая частота показывает, в каком выпрямителе можно использовать полупроводник, применять его в сетевом или выходном блоке инвертора.

Прямое напряжение полупроводника характеризует мощность рассеяния на самом приборе. Это позволяет рассчитать размеры радиатора или системы охлаждения. Предельная температура корпуса сварочного аппарата дает возможность предусмотреть схему защиты от перегрева.

Применение в сварке

В любом трансформаторном сварочном аппарате постоянного тока или инверторе присутствуют силовые диоды. Они предназначены для выпрямления переменного тока. Для повышения коэффициента полезного действия диоды подключают по мостовой схеме, в этом случае оба полупериода приходятся на нагрузку.

В трансформаторном сварочном аппарате выпрямительные диоды устанавливают на выходе вторичной обмотки. Сварочное оборудование имеет понижающий трансформатор, соответственно, напряжение холостого хода значительно ниже входного, поэтому здесь требуются приборы большой мощности и низкой частоты. Для этого подойдут выпрямительные диоды В200 (максимальный ток 200А).

Для сварочного инвертора требуется два выпрямителя. Один располагается на входе источника питания. Он преобразует переменный ток 220 вольт 50 Гц в постоянный, который преобразуется в дальнейшем в переменный ток высокой частоты (40-80 кГц).

При мощности аппарата 5 кВт выпрямительные диоды должны иметь обратное напряжение 600-1000 В и средний прямой ток 25-35 А при частоте 50 Гц.

Второй выпрямитель располагается после высокочастотного трансформатора. Здесь требования другие. Максимальный прямой ток должен быть не менее 200 А на частоте 80 кГц, а обратное напряжение превышать напряжение холостого хода (60-70 В).

В любом случае используются диоды из категории мощных, с площадкой для монтажа радиатора, поскольку без отведения тепла устройство быстро сгорит.

Особенность выпрямителей

Выпрямитель для сварочного аппарата выполняется по мостовой схеме. При изготовлении сварочного аппарата своими руками и применении диодов В200 нужно учитывать, что их корпус находится под напряжением.

Поэтому когда выпрямитель устанавливают на радиатор, он должен быть изолирован от остальных элементов схемы, от корпуса прибора и от соседних диодов тоже. А это создает определенные неудобства для сварщика.

Приходится использовать более крупный корпус. Для уменьшения габаритов аппарата применяют выпрямительный прибор ВЛ200, который имеет другую полярность. Это позволяет объединить полупроводники на два парных радиатора.

В последние годы стали выпускать довольно мощные диодные мосты в одном корпусе. По размерам такая конструкция из диодов примерно соответствует спичечному коробку, имеет площадку для посадки радиатора, максимальный прямой ток 30-50 А. Диодная сборка имеет значительно меньшую стоимость по сравнению с диодами В200.

Если по работе устройства требуется более мощный мост, то эту проблему можно легко решить, используя параллельное подключение мостовых сборок. Однако их надежность в таком случае будет ниже, чем у одиночных мощных диодов.

При использовании параллельной схемы соединения диодных мостов необходимо учитывать, что все они имеют некоторый разброс по параметрам.

Поэтому при подборе элементов необходимо делать это с некоторым запасом прочности. При соблюдении этого требования для сварочного аппарата можно получить диодный мост более компактный, чем при использовании одиночных диодов.

Диодные сборки позволяют размещать их на одном радиаторе, так как корпусы не находятся под напряжением. Это позволяет монтировать их в любом месте, и даже снаружи.

В зависимости от требуемого сварочного тока для выпрямителя могут потребоваться от 3 до 5 диодных сборок. Для лучшей теплоотдачи диодные мосты устанавливаются на радиатор через теплопроводящую пасту.

К контактам проводники рекомендуется подсоединяться пайкой, в противном случае могут быть потери мощности в месте контакта и его сильный нагрев.

Применение на практике

Для примера, рассмотрим инверторный аппарат TELWIN Force 165. Во входном выпрямителе используются диодные сборки GBPC3508. Выпрямительный мост GBPC3508 может работать с током 35 А, обратное напряжение – 800 В.

С ним вместе идет обязательно сглаживающий фильтр из конденсаторов большой емкости. Кроме этого имеется фильтр электромагнитной совместимости, который не пропускает помехи от инвертора в бытовую сеть.

На выходе инвертора используются мощные сдвоенные диоды с общим катодом. Они имеют высокое быстродействие в отличие от диодов расположенных на входе устройства.

Благодаря малому времени восстановления, менее 50 наносекунд, приборы успевают переключать высокочастотный ток на выходе вторичной обмотки.

В данном приборе используются сдвоенные диоды марок STTH6003CW, FFH30US30DN или VS-60CPH03, рассчитаны на прямой ток 30 ампер на один прибор (60 ампер на оба) и обратное напряжение 300 вольт.

Устанавливаются на радиатор. Для защиты полупроводников от перегрузки используется RC фильтр. Схема управления требует стабильный источник питания без бросков напряжения.

Читайте также  Секционный забор из сварной сетки, установка секций своими руками, крепление оцинкованной рабицы к столбам: инструкция, фото и видео-уроки, цена

Для этого в приборе предусмотрены стабилитроны или уже готовый интегральный стабилизатор, которые обеспечивают стабильное питание на микросхемах управления. В результате получается компактное устройство, позволяющее качественно варить металл.

Источник:
http://svaring.com/welding/prinadlezhnosti/diody-dlya-svarochnogo-apparata

Выбор диодного моста для сварочного аппарата

Современный аппарат для сварки состоит из множества компонентов и узлов, которые отвечают за полноценную работу оборудования. Одним из важнейших компонентов является диодный мост сварочного оборудования. В связке с остальными узлами он играет первостепенную роль, преобразовывая энергию из постоянной в пульсирующую. У диодных мостов есть масса достоинств, которые улучшают и ускоряют работу.

Существует множество определений, что из себя представляют диоды для сварочного аппарата. Каждый мастер трактует по-своему, ровно как и учебники, поэтому многим начинающим сварщикам трудно понять, что из себя представляют сварочные диоды и каков принцип их действия. Особенно, если сварщик не обладает особыми знаниями в области электротехники. В этой статье мы постараемся кратко рассказать все о диодах и диодных мостах, поведаем об особенностях их строения и подключения.

Определение

Говоря простыми словами, диодный мост — это стандартный выпрямитель. Он состоит из нескольких мощных силовых диодов, связанных в единую цепь. Справа схема диодного моста. Это его стандартная схема, которую с опытом можно модифицировать под свои нужды. Диоды крепятся к радиаторам с помощью болтов и гаек. Вся эта конструкция находится под постоянным напряжением и призвана выполнять простую, но важную роль — преобразовать ток переменный в ток пульсирующий. Этот процесс называется выпрямлением, поэтому сварочные мосты называют выпрямителями.

Кстати, один из самых эффективных выпрямителей — ВД 306. Его изготавливают многие заводы и даже сами сварщики делают его своими руками из подручных средств. Экземпляры, изготовленные на заводе, позволяют плавно регулировать ток, но при этом потребляют достаточно много электроэнергии — около 12 киловатт, и весят 100 кг. Согласитесь, не очень удобный прибор для любительской сварки в гараже. Поэтому его используют в цехах и на заводах. А в домашних условиях используют самодельные выпрямители из диодов или более компактные приборы.

Использование диодов позволяет решить сразу несколько проблем:

  • Диодный мост стабилизирует перепады напряжения и помогает запуститься аппаратам со слабыми техническими характеристиками.
  • Качество сварного шва становится лучше.
  • Дуга заживается проще и быстрее, даже если аппарат выдает малый показатель напряжения.
  • Диодный мост на сварочном аппарате улучшает характеристики дуги. Она горит стабильнее и дольше.

Типы сварочных диодов и их особенности

Ключевой элемент сварочного диодного моста — это сами диоды. Сейчас в магазине представлено множество силовых диодов, со своими характеристиками и особенностями. Ниже вы можете видеть таблицу с классификацией диодов. Опытные сварщики умудряются покупать их на барахолках или радиорынках, экономя деньги. Вы тоже можете попробовать поискать нужные вам диоды на ближайшем рынке, но учтите, что нечестные продавцы часто продают неработающие или небезопасные комплектующие. Приобретайте их только если разбираетесь в электротехнике.

Вне зависимости от типа диоды также делятся по силе тока. Они могут быть малой мощности (с показателем до 3*102 миллиампер), средней мощности (с показателем от 3*102 миллиампер до 10 ампер) и высокой мощности (от 10 ампер и более). Мощные сварочные диоды бывают точечными и плоскостными. Плоскостные используются в выпрямителях с низкой частотой работы, а точечные используются во всех остальных случаях. Так или иначе, все они применяются при изготовлении диодного моста для сварочного аппарата. Если диоды использовать с хорошим сварочным аппаратом, то можно добиться более качественного преобразования тока.

Сборка диодного моста

Обычно для диодного моста используют 4 диода, но можно использовать от 2 до 5 штук. Количество диодов зависит от значения тока, который нам нужно получить; чем больше диодов, тем больше ток. Мы будем использовать 4 штуки. Два диода подключаются друг к другу параллельно и имеют разную направленность. Еще два диода подключаются так же параллельно, но направлены друг к другу. При правильном подключении все компоненты как раз и образуют диодный мост.

При параллельном подключении диодов друг к другу учтите, что они могут несколько отличаться по своим характеристикам в работе, даже если вы купите идентичные комплектующие. Так что тщательно рассчитывайте необходимое напряжение и мощность диодов, которые вам необходимы для изготовления моста. В таком случае диодный мост на сварочник получится более компактным и эффективным.

Диодный мост можно смело устанавливать на один радиатор. Готовую конструкцию можно прикрепить к корпусу сварочника с любой удобной стороны или просто использовать как отдельный прибор. Мы рекомендуем устанавливать их на радиатор с предварительным нанесением теплопроводящей пасты.

Проводники лучше скреплять с контактами методом пайки, чтобы сократить вероятность потери мощностей через контакты при работе. Также обратите внимание, что при изготовлении моста по стандартной схеме нужно дополнительно использовать электролитический конденсатор с большой емкостью, чтобы облегчить сварочные работы.

Вместо заключения

Для новичков это особенно сложная тема, которую не получится понять сходу. В своей статье мы затронули только основные особенности, связанные с изготовлением и подключением диодного моста. Если эта тема вам интересна, изучите базовые принципы электротехники. Тогда вам будет проще понять суть работы диодных мостов. В интернете есть множество учебников и полезных видео, подробно объясняющих даже самые сложные принципы сварки и работы сварочных узлов. Не поленитесь изучить их, особенно, если вы хотите развиваться в этом деле как любитель или как профессионал. Поделитесь этой статьей в своих социальных сетях и оставьте комментарий о своем опыте использования диодных мостов. Желаем удачи!

Источник:
http://svarkaed.ru/oborudovanie-dlya-svarki/detali-i-prisposobleniya/diodnye-mosty.html

Назначение и нюансы изготовления диодного моста в сварочном аппарате

Диод представляет собой полупроводниковый агрегат с разной проводимостью, определяемой прикладываемым напряжением. Он имеет два вывода: катод и анод. Если подается прямое напряжение, то есть на аноде в сравнении с катодом потенциал положителен, агрегат открыт.

Если напряжение отрицательно, он закрывается. Такая особенность нашла применение в электротехнике: диодный мост активно используется в сварочном деле для выпрямления переменного тока и улучшения качества сварных операций.

Выпрямитель для сварки

По этой причине, при проведении сварных работ своими руками, требуется выпрямитель для сварочного аппарата, позволяющий в некоторой мере сгладить мощные перепады сетевого напряжения.

Особенность выпрямителей

Многие сварочные аппараты требуют доработки, заключающейся в применении специальных выпрямителей. Для их изготовления часто применяют диоды, способные пропускать напряжение исключительно в одну сторону.

Изначально для усовершенствования сварки мастера использовали диодные схемы из четырех диодов на радиолампах. Но данная технология была слишком сложной и дорогой. В наши дни силовые диоды стали доступными по стоимости, поэтому активно используются в сварных операциях.

[box type=”info”]На заметку! Подбирайте такие электрические элементы, которые обладают высоким качеством, и следите за тем, чтобы фактический ток в цепи был меньшим, чем заданный по номиналу. Тогда аппарат прослужит без поломок максимально длительное время.[/box] Электрическая схема выпрямителя для сварки.

Схема для такого приспособления не отличается особой сложностью: она состоит из проводников, пропускающих электрический поток и направленных в актуальную сторону.

Если быть более точным, то два элемента общей схемы соединены последовательно и направлены друг к другу, а еще два ‒ располагаются один за другим. Первые из них проводят ток в выбранном направлении, вторые ‒ не позволяют току вернуться.

Выпрямители на диодах характеризуются разной мощностью, поэтому вид электрода необходимо подбирать с учетом этого параметра. Чем выше мощность, тем более толстый электрод потребуется.

На промышленном производстве требуется применить мощную аппаратуру, которая позволит выполнять сварные соединения без каких-либо пауз. Для бытового использования подойдут менее мощные выпрямители для сварки.

Применение в сварке

Диодную схему можно собрать из отдельных диодов или приобрести монолитную конструкцию с разными параметрами. Первый вариант менее предпочтителен, чем второй. Но при сгорании одного диода не требуется менять все четыре элемента, как в случае монолитной конструкции.

Если применить такие агрегаты для переориентации сварки на работу с постоянным током, можно добиться расширения ее функциональных возможностей.

Применение выпрямителя из диодов поможет:

  • устранить перебои напряжения в сети;
  • упростить задачу розжига электрической дуги в условиях номинального и пониженного напряжения;
  • увеличить тепловой режим при длительной работе сварочного аппарата.

На заметку! С помощью выпрямителя из диодов для сварочного аппарата можно поддерживать электрическую дугу на стабильном уровне, что позволяет повысить эстетические качества созданных своими руками сварных соединений на металлических конструкциях.

Выпрямитель для сварки собирается по мостовой схеме, но при этом важно учесть, что корпус агрегата находится под напряжением.

Поэтому при установке диодного моста на радиатор, важно изолировать агрегат от иных элементов схемы, от корпуса сварочного аппарата, соседних диодов. А это чревато определенными неудобствами для сварщика: нужно использовать более крупный по размеру корпус сварки.

Выпрямитель тока для сварочных работ.

Как следствие, аппарат получается тяжелым и громоздким.

Чтобы уменьшить габариты сварки, можно подобрать выпрямительный прибор ВЛ200 с другой полярностью, объединив полупроводники на два парных радиатора. Но еще лучше, установить в едином корпусе сварки мощные, но при этом максимально компактные диодные мосты.

Такое решение обойдется сварщику в несколько раз дешевле, нежели покупка диодов В200. Деталь по размеру не больше, чем спичечный коробок. Она имеет площадку для установки радиатора, работает на максимальном, прямом токе ‒ 30-50 А.

Важно! Если в процессе выполнения сварных работ потребовался более мощный мост, стоит воспользоваться параллельным подключением мостовых сборок. Главное понимать, что при таком решении надежность конструкции будет ниже, чем при одиночных мощных диодах.

Читайте также  Как отполировать оргстекло своими руками

Если говорить о схемах полупроводникового типа с устройством выпрямителя, важно отметить следующее:

  1. Лучшие показатели имеет трехфазная система, позволяющая использовать мощность сети до 380 В.
    Ее применяют на промышленных предприятиях, где важно создать длительный непрерывный сварной процесс без пауз для соединения больших по размеру металлических деталей: ворот, контейнеров, хозяйственных металлических сооружений и т.п.
  2. Система с одной фазой подходит для бытового использования, когда сварной процесс длится короткий промежуток времени, и нет необходимости в более длительной сварке.

Если планируется установить параллельную схему соединения диодных мостов, важно учесть некоторый разброс по параметрам каждого диода. Подбирать элементы нужно так, чтобы оставался некоторый запас прочности. Тогда можно получить компактный диодный мост для сварочного аппарата.

Диодные сборки можно разместить на одном радиаторе, но для повышения показателей теплоотдачи их монтируют через теплопроводящую пасту. Актуальное количество таких схем для выпрямителя определяется требуемым сварочным током: стандартное количество 3-5 сборок.

Проводники стоит соединять с контактами при помощи пайки, и иначе в местах контакта потери мощности, или соединение сильно нагревается. При необходимости выполнить сварные операции, выпрямитель подключается к аппарату для сварки.

Как сделать выпрямитель своими руками?

Если в наличии мастера имеются комплектующие детали, вполне реально изготовить самодельный сварочный выпрямитель. При условии соблюдения всех рекомендаций специалистов он гарантировано обеспечит процесс ручной дуговой сварки постоянным током, но потребуется применить электрод с обмазкой.

Использовать проволоку без обмазки также допустимо, но только при условии большого опыта в сварных вопросах. Для неопытного сварщика справиться с ней будет практически нереально.

Диодный мост для сварочного аппарата.

Обмазка при расплавлении электрода препятствует проникновению составляющих воздуха в расплавленный металл сварного соединения. Без нее контакт металла в расплавленном виде с азотом и кислородом снизят прочностные свойства шва, сделав его хрупким и пористым.

Сначала потребуется выбрать или смотать своими руками понижающий трансформатор с требуемыми параметрами. Собирают трансформатор до подключения диодного моста.

Если выбран путь самостоятельного изготовления аппарата, важно правильно рассчитать его элементы, в том числе:

  • параметры магнитопровода;
  • актуальное количество витков;
  • размеры сечения шин, проводов.

[box type=”info”]На заметку! Расчеты для изготовления трансформаторов осуществляются по единой методике, поэтому данная задача не представляет трудностей даже для малоопытного сварщика со школьными знаниями электричества.[/box]

В работе не обойтись без светодиодов: нужны они в качестве проводников тока в одном единственном направлении. Простейший диодный выпрямитель, созданный по мостиковой схеме, монтируют на радиатор с целью теплообмена и охлаждения.

Мощные диоды для сварочного аппарата, по типу ВД-200, выделяют при работе довольно большой объем тепловой энергии. Чтобы обеспечить падающую характеристику тока, в цепь потребуется включить дроссель последовательно.

Активное переменное сопротивление в такой схеме обеспечит сварщику возможность плавно регулировать сварочный ток. Далее, один полюс нужно подключить к сварной проволоке, а второй ‒ к рабочему объекту.

Электролитический конденсатор в составе схемы необходим в качестве сглаживающего фильтра для снижения пульсаций.

Выполнить намотку реостата несложно своими силами, но для такой задачи потребуется керамический сердечник и проволока из никелина или нихрома. Актуальный диаметр проволоки определит величина регулируемого тока сварной операции.

Расчет сопротивления реостата нужно проводиться учетом удельного сопротивления электрода, его сечения и общей длины.

Электрическая схема сварки с диодным мостом.

Шаг регулировки тока для сварки зависит от диаметра витков. Если правильно собрать перечисленные детали в единый агрегат, процесс сварки будет сопровождаться постоянным током. Не лишним будет и монтаж резистора, препятствующего короткому замыканию при работе.

Оно может происходить при касании проволоки о металл без зажигания дуги. Если в это время на конденсаторе нет сопротивления, он мгновенно разрядится, произойдет щелчок, электрод разрушится или прилипнет к металлу.

При наличии резистора можно сгладить разряды на конденсаторе, сделать поджога электрода более простым и мягким. Изготовление аппарата для выпрямления сварного тока своими руками позволит создавать максимально аккуратные и долговечные сварные швы.

Диодный мост для сварочного аппарата преобразует переменный ток в постоянный, что позволяет повысить качества сварных соединений. Такое приспособление можно приобрести в готовом виде или создать своими руками, следуя советам, озвученным в статье.

Источник:
http://tutsvarka.ru/oborudovanie/diodnyj-most-v-svarochnom-apparate

Ремонт и доработки сварочных инверторов своими руками

Характеристики большинства бюджетных инверторов нельзя назвать выдающимися, в то же время мало кто откажется от удовольствия использовать оборудование со значительным запасом надёжности. Между тем существует немало способов усовершенствовать недорогой сварочный инвертор.

Типовая схема и принцип работы инвертора

Чем дороже сварочный инвертор, тем больше в его схеме вспомогательных узлов, задействованных в реализации специальных функций. А вот сама схема силового преобразователя остаётся практически неизменной даже у дорогостоящего оборудования. Этапы превращения сетевого электрического тока в сварочный достаточно легко проследить — на каждом из основных узлов схемы происходит определённая часть общего процесса.

С сетевого кабеля через защитный выключатель напряжение подаётся на выпрямительный диодный мост, сопряжённый с фильтрами высокой ёмкости. На схеме этот участок легко заметить, здесь расположены внушительные по размеру «банки» электролитических конденсаторов. У выпрямителя задача одна — «развернуть» отрицательную часть синусоиды симметрично вверх, конденсаторы же сглаживают пульсации, приводя направление тока практически к чистой «постоянке».

Схема работы сварочного инвертора

Далее по схеме находится непосредственно инвертор.

С понижающего трансформатора напряжение снимает выходной выпрямитель, ведь мы хотим сварку именно на постоянном токе. Благодаря выходному фильтру природа тока меняется с высокочастотного пульсирующего до практически прямой линии. Естественно, в рассмотренной цепи преобразований есть множество промежуточных звеньев: датчиков, управляющих и контрольных цепей, но их рассмотрение выходит далеко за рамки любительской радиоэлектроники.

Конструкция сварочного инвертора: 1 — конденсаторы фильтра; 2 — выпрямитель (диодная сборка); 3 — IGBT-транзисторы; 4 — вентилятор; 5 — понижающий трансформатор; 6 — плата управления; 7 — радиаторы; 8 — дроссель

Узлы, пригодные к модернизации

Важнейший параметр любого сварочного аппарата — вольт-амперная характеристика (ВАХ), за счёт неё и обеспечивается стабильное горение дуги при разной её длине. Правильная ВАХ создаётся микропроцессорным управлением: маленький «мозг» инвертора на ходу меняет режим работы силовых ключей и мгновенно подстраивает параметры сварочного тока. К сожалению, каким либо образом перепрограммировать бюджетный инвертор нельзя — управляющие микросхемы в нём аналоговые, а замена на цифровую электронику требует незаурядных знаний схемотехники.

Однако «умений» управляющей схемы вполне достаточно, чтобы нивелировать «криворукость» начинающего сварщика, ещё не научившегося стабильно удерживать дугу. Гораздо правильнее сосредоточиться на устранении некоторых «детских» болезней, первая из которых — сильный перегрев электронных компонентов, ведущий к деградации и разрушению силовых ключей.

Вторая проблема — использование радиоэлементов сомнительной надёжности. Устранение этого недостатка сильно снижает вероятность возникновения поломок через 2–3 года эксплуатации аппарата. Наконец, даже начинающему радиотехнику будет вполне по силам реализовать индикацию фактического сварочного тока для возможности работы со специальными марками электродов, а также провести ряд других мелких доработок.

Улучшение теплоотвода

Первый недостаток, которым грешит подавляющее большинство недорогих инверторных аппаратов — плохая схема отвода тепла с силовых ключей и выпрямительных диодов. Начинать доработку в этом направлении лучше с увеличения интенсивности принудительного обдува. Как правило, в сварочных аппаратах устанавливают корпусные вентиляторы с питанием от служебных цепей напряжением 12 В. В «компактных» моделях принудительное воздушное охлаждение может вовсе отсутствовать, что для электротехники такого класса, безусловно, нонсенс.

Достаточно просто увеличить воздушный поток путём установки нескольких таких вентиляторов последовательно. Проблема в том, что «родной» кулер скорее всего придётся снять. Чтобы эффективно работать в последовательной сборке, вентиляторы должны иметь идентичную форму и число лопастей, а также скорость вращения. Собрать одинаковые кулеры в «стопку» крайне просто, достаточно стянуть их парой длинных болтов по диаметрально противоположным угловым отверстиям. Также не стоит беспокоиться о мощности источника служебного питания, как правило её достаточно для установки 3–4 вентиляторов.

Если внутри корпуса инвертора недостаточно места для установки вентиляторов, можно приладить снаружи один высокопроизводительный «канальник». Его установка проще по той причине, что не требуется подключение к внутренним цепям, питание снимается с клемм кнопки включения. Вентилятор, разумеется, должен устанавливаться напротив вентиляционных жалюзеек, часть которых можно вырезать, чтобы снизить аэродинамическое сопротивление. Оптимальное направление потока воздуха — на вытяжку из корпуса.

Второй способ улучшить теплоотвод — замена штатных алюминиевых радиаторов на более производительные. Новый радиатор нужно выбирать с наибольшим количеством как можно более тонких рёбер, то есть с наибольшей площадью контакта с воздухом. Оптимально в этих целях использовать радиаторы охлаждения компьютерных ЦП. Процесс замены радиаторов довольно прост, достаточно соблюдать несколько простых правил:

  1. Если штатный радиатор изолирован от фланцев радиоэлементов слюдой или резиновыми прокладками, их нужно сохранить при замене.
  2. Для улучшения теплового контакта нужно использовать кремнийорганическую термопасту.
  3. Если радиатор нужно подрезать, чтобы он поместился в корпус, обрезанные рёбра нужно тщательно обработать надфилем, чтобы снять все заусенцы, иначе на них будет обильно оседать пыль.
  4. Радиатор должен быть плотно прижат к микросхемам, поэтому предварительно на нём нужно разметить и просверлить крепёжные отверстия, возможно, потребуется нарезать резьбу в теле алюминиевой подошвы.

Дополнительно отметим, что нет смысла менять штучные радиаторы отдельно стоящих ключей, замене подвергаются только теплоотводы интегральных схем или нескольких высокомощных транзисторов, установленных в ряд.

Индикация сварочного тока

Даже если на инверторе установлен цифровой индикатор установки тока, он показывает не реальное его значение, а некую служебную величину, масштабированную для наглядного отображения. Отклонение от фактической величины тока может составлять до 10%, что неприемлемо при использовании специальных марок электродов и работе с тонкими деталями. Получить реальное значение сварочного тока можно путём установки амперметра.

Читайте также  Дренажный насос для канализации: как выбрать для откачки, виды, цена

В пределах 1 тысячи рублей обойдётся цифровой амперметр типа SM3D, его даже можно аккуратно встроить в корпус инвертора. Основная проблема в том, что для измерения столь высоких токов требуется подключение через шунт. Его стоимость находится в пределах 500–700 рублей для токов в 200–300 А. Обратите внимание, что тип шунта должен соответствовать рекомендациям производителя амперметра, как правило, это вставки на 75 мВ с собственным сопротивлением порядка 250 мкОм для предела измерения в 300 А.

Установить шунт можно либо на плюсовую, либо на минусовую клемму изнутри корпуса. Обычно размеров соединительной шины достаточно для подключения вставки длиной около 12–14 см. Изгибать шунт нельзя, поэтому если длины соединительной шины недостаточно, её нужно заменить медной пластиной, косичкой из очищенного однопроволочного кабеля или отрезком сварочной жилы.

Амперметр подключается измерительными выходами к противоположным зажимам шунта. Также для работы цифрового прибора требуется подать напряжение питания в диапазоне 5–20 В. Его можно снять с проводов подключения вентиляторов или найти на плате точки с потенциалом для питания управляющих микросхем. Собственное потребление амперметра ничтожно.

Повышение продолжительности включения

Продолжительность включения в контексте сварочных инверторов более разумно называть продолжительностью нагрузки. Это та часть десятиминутного интервала, в которой инвертор непосредственно выполняет работу, оставшееся время он должен пребывать на холостом ходу и охлаждаться.

Для большинства недорогих инверторов реальная ПН составляет 40–45% при 20 °С. Замена радиаторов и устройство интенсивного обдува позволяют увеличить этот показатель до 50–60%, но это далеко не потолок. Добиться ПН порядка 70–75% можно путём замены некоторых радиоэлементов:

  1. Конденсаторы обвязки ключей инвертора нужно поменять на элементы той же ёмкости и типа, но рассчитанные под более высокое напряжение (600–700 В);
  2. Диоды и резисторы из обвязки ключей следует заменить на элементы с большей рассеиваемой мощностью.
  3. Выпрямительные диоды (вентили), а также MOSFET или IGBT-транзисторы можно заменить на аналогичные, но более надёжные.

О замене самих силовых ключей стоит рассказать отдельно. Для начала следует переписать маркировку на корпусе элемента и найти подробный даташит на конкретный элемент. По паспортным данным выбрать элемент для замены достаточно просто, ключевыми параметрами служат пределы частотного диапазона, рабочее напряжение, наличие встроенного диода, тип корпуса и предельный ток при 100 °С. Последний лучше рассчитать собственноручно (для высоковольтной стороны с учётом потерь на трансформаторе) и приобрести радиоэлементы с запасом предельного тока около 20%. Из производителей такого рода электроники наиболее надёжными считаются International Rectifier (IR) или STMicroelectronics. Несмотря на довольно высокую цену, крайне рекомендуется приобретать детали именно этих брендов.

Намотка выходного дросселя

Одним из наиболее простых и в то же время самых полезных дополнений для сварочного инвертора будет намотка индуктивной катушки, сглаживающей пульсации постоянного тока, которые неизбежно остаются при работе импульсного трансформатора. Основная специфика такой затеи в том, что дроссель изготавливается индивидуально для каждого отдельного аппарата, а также может со временем корректироваться по мере деградации электронных компонентов или при изменении порога мощности.

Для изготовления дросселя понадобится всего ничего: изолированный медный проводник сечением до 20 мм 2 и сердечник, желательно из феррита. В качестве магнитопровода оптимально подойдёт либо ферритовое кольцо, либо сердечник броневого трансформатора. Если магнитопровод набран из листовой стали, его нужно просверлить в двух местах с отступом около 20–25 мм и стянуть заклёпками, чтобы иметь возможность беспроблемно прорезать зазор.

Дроссель начинает работать, начиная от одного полного витка, однако реальный результат виден, начиная с 4–5 витков. При испытаниях следует добавлять витки до тех пор, пока дуга не начнёт ощутимо сильно тянуться, мешая отрыву. Когда варить с отрывом станет затруднительно, нужно скинуть с катушки один виток и подключить параллельно дросселю лампу накаливания на 24 В.

Тонкая настройка дросселя выполняется с помощью сантехнического винтового хомута, которым можно уменьшить зазор в сердечнике, либо деревянного клина, которым этот зазор можно увеличить. Нужно добиваться, чтобы горение лампы при розжиге дуги было максимально ярким. Рекомендуется изготовить несколько дросселей для работы в диапазонах до 100 А, от 100 до 200 А и более 200 А.

Заключение

Все «навесные» дополнения, такие как дроссель или амперметр, лучше монтировать отдельной приставкой, которая включается в разрыв любой из сварочных жил посредством штекера типа байонет. Таким образом внутри корпуса инвертора сохранится достаточно пространства для вентиляции, а дополнительные устройства можно будет легко отключить за ненадобностью.

Нужно помнить, что кардинальной, глубокой модернизации провести не получится, иными словами, «РЕСАНТУ» в KEMPPI разумными силами и средствами не превратить. Однако изготовление приспособлений и мелкая доработка оборудования — отличный способ лучше изучить технологию дуговой сварки и проникнуться профессиональными тонкостями.

Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов

Источник:
http://rmnt.mirtesen.ru/blog/43106358257/Remont-i-dorabotki-svarochnyih-invertorov-svoimi-rukami

Выпрямитель для сварочного аппарата

Эти диоды имеют внушительные размеры, а их корпус сажается на алюминиевый радиатор. Причем корпус диода, а значит, и крупный радиатор находятся под напряжением, поэтому диоды с их радиаторами должны крепиться так, чтобы не имели контакта друг с другом, не касаясь токопроводящих частей корпуса сварочного аппарата.

Такое неудобство с креплением приводит к тому, что размеры собранного сварочного диодного моста слишком вырастают, увеличивая и усложняя конструкцию сварочного аппарата в целом. Использование такого же диода, но с другой полярностью (ВЛ200) позволяет объединить радиаторы в две пары.

У радиаторов, возможно, потребуется просверлить отверстие и нарезать резьбу, для крепления диодов.

В продаже есть уже готовые — интегрированные в одном корпусе диодные мосты. Размер одного такого диодного мостика сопоставим с размерами спичечного коробка или одного диода В200 без радиатора, при максимальном токе 30-50А, а цена гораздо ниже.

Если интегрированные диодные мосты соединить параллельно, то вместе они смогут выдерживать более значительные токи. Однако надежность такого сварочного выпрямителя будет существенно меньше чем выпрямителя из диодов типа В200.

Строго говоря, суммарный допустимый ток такого объединенного выпрямителя не равняется сумме максимальных токов входящих в него диодных мостов, они не могут обладать абсолютно одинаковыми параметрами, а значит, каждый пропускает через себя несколько различные по величине токи. Однако если собрать эту схему с некоторым запасом по мощности, учитывая ток короткого замыкания, то можно добиться более компактных размеров, чем в случае с В200. Дело в том, что корпуса диодных мостиков не находятся под напряжением и их все можно садить на один общий радиатор, и можно свободно крепить такой выпрямитель где удобно внутри корпуса, или снаружи, сварочного аппарата. Для выпрямителя может использоваться 3-5 интегрированных диодных мостов, обязательно одной и той же марки. Как показывает практика, они не сильно греются и без проблем могут выдерживать кратковременные перегрузки, притом, что сварочный аппарат большей частью вообще работает в кратковременном режиме. Для лучшей теплоотдачи, между диодными мостами и радиатором наносится теплопроводящая паста. Подсоединять контакты нужно обязательно пайкой, иначе будет сильный нагрев контактов.

На выпрямителе сварочного аппарата происходит неизбежное падение напряжения, поэтому на выходе выпрямителя напряжение будет где-то на 4-5В меньше чем напряжение холостого хода трансформатора (без конденсатора). При этом напряжение на выходе не будет строго постоянным — его форма будет пульсирующей.

Если проводить измерения в режиме холостого хода вольтметром постоянного тока, то его показания будут соответствовать чему-то вроде эффективного значения постоянного пульсирующего напряжения (показания примерно в 1,4-1,5 раза меньше напряжения пиков максимумов). В принципе, обычные вольтметры не предназначены для точного измерения подобного рода сигнала. Форму напряжения можно сгладить, установив на выходе конденсатор емкостью 5000-10000 мкФ. В этом случае показания вольтметра возрастут примерно в 1,4 раза, так как конденсатор на холостом ходу зарядится до уровня максимального по амплитуде напряжения. Конденсатор рекомендуется ставить особенно в том случае, если источник питания имеет низкое выходное напряжение (меньше 40В) и возникают трудности в момент зажигания сварочной дуги. При этом конденсатор лучше включить через сопротивление порядка 0,5-1 Ом.

Необходимость резистора обусловлено тем, что в момент зажигания дуги происходит касание конца электрода об металл изделия — то есть короткое замыкание. Если сопротивления в цепи конденсатора нет, то происходит мгновенный разряд конденсатора большой емкости, импульс высокого тока сопровождается громким щелчком, а часто разрушением кончика электрода или его мгновенным привариванием к металлу изделия. Работать с таким источником весьма неудобно, треск разрядов действуют на нервы. Дополнительный же резистор ограничивает ток, сглаживает разряд конденсатора, делая зажигание дуги легким и мягким.

Источник:
http://tool-land.ru/svarochnyy-diodnyy-most.php