Испытание материалов и сварных соединений

Испытание материалов и сварных соединений

Механические свойства характеризуют сопротивление металла деформации и разрушению под действием механических сил (нагрузки).

К основным механическим свойствам относят:

— прочность
— пластичность
— ударную вязкость
— твердость

Прочность – это способность металла не разрушаться под действием механических сил (нагрузки).

Пластичность – это способность металла изменять форму (деформироваться) под действием механических сил (нагрузки) без разрушения.

Ударная вязкость определяет способность металла противостоять ударным (динамическим) механическим силам (ударным нагрузкам).

Твердость – это способность металла сопротивляться проникновению в него других более твердых материалов.

Виды и условия механических испытаний металлов

Для определения механических свойств выполняют следующие виды испытаний:

— испытания на растяжение;
— испытания на статический изгиб;
— испытания на ударный изгиб;
— измерение твердости.

К условиям испытаний образцов относятся: температура, вид и характер приложения нагрузки к образцам.

Температура проведения испытаний:

— нормальная (+20°С);
— низкая (ниже +20°С, температура 0. -60°С);
— высокая (выше+20°С, температура +100. +1200°С).

Вид нагрузок:

Характер приложения нагрузки:

— нагрузка возрастает медленно и плавно или остаётся постоянной — статические испытания;
— нагрузка прилагается с большими скоростями; нагрузка ударная — динамические испытания;
— нагрузка многократная повторно-переменная; нагрузка изменяется по величине или по величине и направлению (растяжение и сжатие) — испытания на выносливость.

Образцы для механических испытаний

Механические испытания выполняют на стандартных образцах. Форма и размеры образцов устанавливаются в зависимости от вида испытаний.

Для механических испытаний на растяжение используют стандартные цилиндрические (круглого сечения) и плоские (прямоугольного сечения) образцы. Для цилиндрических образцов в качестве основных приняты образцы диаметром dо=10 мм короткий lо=5×do = 50 мм и длинный lо=10×do = 100 мм.

Короткий круглый образец

Длинный круглый образец

Плоские образцы имеют толщину равную толщине листа, а ширина устанавливается равной 10, 15, 20 или 30 мм.

Плоский образец без головок для захватов разрывной машины

Плоский образец с головками

Механические свойства, определяемые при статических испытаниях

Статическими называют испытания, при которых прилагаемая нагрузка к образцу возрастает медленно и плавно.

При статических испытаниях на растяжение определяются следующие основные механические характеристики металла:

— предел текучести (σ т);
— предел прочности или временное сопротивление (σ в);
— относительное удлинение (δ);
— относительное сужение (ψ).

Предел текучести – это напряжение, при котором образец деформируется без заметного увеличения растягивающей нагрузки.

Предел прочности – это напряжение при максимальной нагрузке, предшествующей разрушению образца.

Относительное удлинение – это отношение приращения длины образца после разрушения к его начальной длине до испытания.

Относительное сужение – это отношение уменьшения площади поперечного сечения образца после разрушения к его начальной площади до испытания.

При испытании на статическое растяжение железо и другие пластические металлы имеют площадку текучести, когда образец удлиняется при постоянной нагрузке Рm.

При максимальной нагрузке Рmax в одном участке образца появляется сужение поперечного сечения, так называемая “шейка”. В шейке начинается разрушение образца. Так как сечение образца уменьшается, то разрушение образца происходит при нагрузке меньше максимальной. В процессе испытания приборы рисуют диаграмму растяжения, по которой определяют нагрузки. После испытания разрушенные образцы складывают вместе и измеряют конечную длину и диаметр шейки. По этим данным рассчитывают прочность и пластичность.

Механические испытания на ударный изгиб

Динамическими называют испытания, при которых скорость деформирования значительно выше, чем при статических испытаниях.

Динамические испытания на ударный изгиб выявляют склонность металла к хрупкому разрушению. Метод основан на разрушении образца с надрезом (концентратором напряжений) одним ударом маятникового копра.

Стандарт предусматривает образцы с надрезами трех видов:

образец U – образный с радиусом R = 1 мм (метод KCU);

образец V – образный с радиусом R = 0.25 мм (метод KCV);

образец I – образный с усталостной трещиной (метод КСТ).

Под ударной вязкостью понимают работу удара, отнесенную к начальной площади поперечного сечения образца в месте концентратора.

После испытания по шкале маятникового копра определяют работу удара, которую затрачивают на разрушение образца. Площадь сечения образца определяют до разрушения.

ОПРЕДЕЛЕНИЕ ТВЕРДОСТИ МЕТАЛЛОВ

Твердостью называется свойство металла оказывать сопротивление пластической деформации в поверхностном слое при вдавливании шарика, конуса или пирамиды. Измерение твердости отличается простотой и быстротой осуществления и выполняется без разрушения изделия. Широкое применение нашли три метода определения твердости:

— твердость по Бринеллю (единица твердости обозначается HB);
— твердость по Роквеллу (единица твердости обозначается HR);
— твердость по Виккерсу (единица твердости обозначается HV).

Определение твердости по Бринеллю заключается во вдавливании стального шарика диаметром D = 10 мм в образец (изделие) под действием нагрузки и в измерении диаметра отпечатка d после снятия нагрузки.

Твердость по Бринеллю обозначают цифрами и буквами НВ, например, 180 НВ. Чем меньше диаметр отпечатка, тем выше твердость. Чем выше твердость, тем больше прочность металла и меньше пластичность. Чем мягче металл, тем меньше устанавливают нагрузку на приборе. Так при определении твердости стали и чугуна нагрузку принимают 3000 Н, никеля, меди и алюминия – 1000 Н, свинца и олова – 250 Н.

Определение твердости по Роквеллу заключается во вдавливании наконечника с алмазным конусом (шкалы А и С) или стального шарика диаметром 1.6 мм (шкала В) в испытуемый образец (изделие) под действием последовательно прилагаемых предварительной (Ро )и основной (Р) нагрузок и в измерении глубины внедрения наконечника (h). Твердость по Роквеллу обозначается цифрами и буквами HR с указание шкалы. Например, 60 HRC (твердость 60 по шкале С).

Определение твердости по Виккерсу заключается во вдавливании алмазного наконечника, имеющего форму правильной четырехгранной пирамиды, в образец (изделие) под действием нагрузки и в измерении диагонали отпечатка d, оставшегося после снятия нагрузки. Метод используется для определения твердости деталей малой толщины и тонких поверхностных слоёв с высокой твердостью. Твердость по Виккерсу обозначается цифрами и буквами HV, например, 200 HV.

Испытания на статический изгиб

Технологические испытания на статический изгиб служит для определения способности металла воспринимать заданный по форме и размерам загиб. Аналогичные испытания проводят и на сварных соединениях.

Испытанию на загиб подвергают образцы из листового и фасонного (пруток, квадрат, уголок, швеллер и др.) металла. Для листового металла ширина образца (b) принимается равной двойной толщине(2•t), но не менее 10 мм. Радиус оправки указывается в технических условиях.

Различают три вида изгиба:

— загиб до определенного угла;
— загиб вокруг оправки до параллельности сторон;
— загиб вплотную до соприкосновения сторон (сплющивание).

Отсутствие в образце трещин, надрывов, расслоений или излома является признаком того, что образец выдержал испытание.

Источник:
http://weldering.com/ispytanie-materialov-svarnyh-soedineniy

Механические испытания сварных соединений

Не важно, с применением какой технологии был создан сварной шов. Он в любом случае будет обладать характерными свойствами, которые присущи всем сварным соединениям. Среди таких свойств прочность, твердость, пластичность и ударная вязкость. И от качества проведенных работ во многом зависит, насколько перечисленные выше свойства соответствуют нормам.

Но как определить, насколько высока прочность или пластичность шва? Для этого применяются разрушающие методы контроля качества швов. Они также называются просто механические испытания сварных соединений. В ходе этих испытаний швы подвергаются механической нагрузке, из-за чего могут деформироваться. Поэтому такой метод контроля называется разрушающим, ведь он влияет на прочность сварных соединений. В этой статье мы подробно расскажем, что такое механические испытания сварных соединений, какие есть достоинства и недостатки у такого метода контроля.

Общая информация

Итак, механические испытания сварных соединений — это комплекс различных механических операций, направленных на определение механических свойств шва. Как мы писали выше, данный метод контроля качества называется разрушающим, а потому применяется лишь при крупносерийном производстве. Ведь серийные изделия производятся по одному и тому же принципу, поэтому по одному образцу можно в целом судить о качестве партии.

Сейчас для разрушающего механического контроля применяются специальные агрегаты. Они не только испытывают швы на прочность, но и фиксируют полученный результат. Это существенно упрощает и ускоряет работу. Обычно проводят анализ только одной детали из всей партии, но для более точного результата можно подвергнуть испытаниям несколько деталей.

Механические испытания сварных соединений регулируются отдельным нормативным документом, это ГОСТ 6996-66. Также изучите документ РД 26-11-08-86., он дополнительно регулирует механические испытания. Мы в целом рекомендуем всем новичкам изучать нормативные документы, поскольку в них довольно подробно и точно расписано, как и при каких условиях нужно проводить разрушающий контроль швов. Именно из нормативных документов вы узнаете всю актуальную информацию, а никак из статей в интернете. Так что не поленитесь и прочтите два этих небольших документа.

Преимущества и недостатки

Механические испытания сварных соединений имеют свои плюсы о минусы. Их, в целом, немного, но мы все же расскажем, чтобы вы четко понимали, в каких ситуациях не стоит использовать такой метод контроля качества.

Итак, главный плюс — это возможность получения информации о всех механических свойствах шва. Вы гарантировано узнаете, насколько шов прочный и пластичный, какова его ударная вязкость и твердость. К тому же, это относительно недорогой способ контроля качества. Но только при условии, что используются бюджетные агрегаты для контроля, а не технически сложные приборы с множеством функций.

Еще один неочевидный плюс — нет нужды в отдельном контролере с профильным образованием. Можно просто делегировать обязанности сварщику. И обучение не займет много времени.

Теперь о недостатках. Самый главный недостаток — узкое применение такого метода контроля. Контролируемые детали зачастую не выдерживают механических испытаний и разрушаются. И если потеря в одну деталь несущественна при выпуске большой партии, то при изготовлении малых тиражей каждая деталь на вес золота.

Исследуемые свойства

У каждого металла есть свои физические свойства, исследовав которые можно понять, насколько деталь противостоит деформации. Проще говоря, насколько она будет долговечной. Чтобы это узнать деталь нужно подвергнуть той самой механической деформации. При этом главная задача — узнать максимальные возможности детали. Поэтому ее подвергают сильным нагрузкам до тех пор, пока она не разрушится.

Читайте также  Брикеты из опилок своими руками: цена оборудования, технология

Выше мы уже перечисляли свойства, которые можно определить методом механического разрушающего контроля. Это пластичность, твердость сварных швов, их прочность и ударная вязкость. Но далее мы расскажем подробнее, что кроется за каждым из этих терминов.

Итак, пластичность — это показатель металла, благодаря которому можно понять, насколько деталь подвержена изменению формы. Чтобы узнать показатель пластичности деталь подвергается механическому удлинению.

Далее твердость. Твердость металла — это показатель, благодаря которому мы можем узнать, насколько деталь противостоит проникновению в ее структуру другого предмета. Существует множество способов определения твердости (метод Бринеля, метод Роквелла, метод Виккерса и так далее). Всех их объединяет одно — в испытуемую деталь подается какой-нибудь предмет (стальной шарик, алмазный конус, алмазная пирамида) и фиксируется, насколько деталь сопротивляется этому механическому воздействию. В этом материале мы не будем подробно рассказывать о каждом методе проверки на твердость, поскольку их больше десятка и это тема для отдельной статьи.

Также испытывается прочность металла. Прочность и твердость во многом похожи, но не стоит их путать. Прочностью называют способность детали противостоять различным нагрузкам, в том числе растяжению. Детали помещают в специальный аппарат, который растягивает их в разные стороны. Такое испытание на прочность вполне эффективно. Но для большей эффективности детали могут дополнительно нагревать в ходе испытания. Для этих целей используется муфельная печь, встроенная в испытательную машину. С помощью печи можно заодно узнать и теплостойкость заготовки. Рекомендуется нагревать деталь не менее получаса, только результаты будут более достоверными.

Не забывайте и про ударную вязкость. Ударная вязкость — это способность металла к сопротивлению ударным нагрузкам. Деталь могут в прямом смысле испытывать с помощью механических ударов, пока не узнают ее предел. Самый распространенный способ проверки на ударную вязкость — это использование маятника, на конце которого расположено грузило. Маятник поднимают и затем опускают, в ходе падения он набирает определенную скорость и с силой бьет деталь.

Особенности

Как вы понимаете, такие физические методы контроля сварных швов наверняка приведут к разрушению детали. А разрушающий метод контроля сварных соединений не всегда приветствуется. Если у вас есть возможность произвести контроль, используя неразрушающие методы, то лучше выберите такой вариант. И не забывайте, что во время контроля нужно зафиксировать температуру воздуха в контрольной комнате, данные самой детали и все типы нагрузок, которым вы подвергаете металл.

Еще обращаем ваше внимание, что механические испытания сварных соединений должны проводиться исходя из начального состояния детали. Это очень важный нюанс, о котором не знают многие новички. Согласитесь, если деталь с многочисленными внешними дефектами подвергнуть тем же механическим нагрузкам, что и детали без дефектов, то первые образцы явно покажут себя не с лучшей стороны.

Чтобы избежать таких проблем нужно проводить простейший визуальный контроль качества. Сварщик с помощью своих глаз и пары простых инструментов (вроде лупы) может обнаружить все видимые дефекты, которые в последствии могут повлиять на результаты механического контроля. Так что не поленитесь и внимательно осмотрите деталь перед тем, как выполнять механический разрушающий контроль.

Мы также рекомендуем выбирать не одну, а несколько деталей из всей партии для проведения контроля. Наверняка все полученные результаты будут отличаться, но вы сможете составить некий усредненный результат и предоставить более точные данные касаемо целой партии изделий. Такой вариант контроля всегда предпочтительнее, чем исследование одной заготовки из огромной партии. Нужно понимать, что на производстве всегда есть человеческий фактор, даже если используются одни и те же сварочные аппараты с одними и теми же режимами работы. И взяв на контроль только одну деталь вы рискуете нарваться на брак или наоборот его не заметить среди большого количества выпускаемой продукции.

Вместо заключения

Если данный метод контроля кажется вам слишком сложным, то спешим вас разубедить. Существуют, например, металлографические исследования сварных соединений, когда досконально изучается структура шва с помощью микроскопа. И, поверьте, это куда сложнее, чем просто подвергнуть деталь механическим нагрузкам.

Да, механические испытания — это не лучший метод контроля качества, если производство не крупносерийное. Но он достаточно эффективный, если завод выпускает продукцию большими партиями. Можно подвергнуть контролю только одно изделие из всей партии и получить более-менее объективную картинку касаемо всех остальных изделий. А вы когда-нибудь проводили механические испытания сварных соединений? Расскажите об этом в комментариях ниже. Желаем удачи!

Источник:
http://svarkaed.ru/svarka/shvy-i-soedineniya/mehanicheskie-ispytaniya-svarnyh-soedinenij.html

Механические испытания сварных соединений

Особенность механических испытаний сварных соединений – обязательность разрушения образцов под разнонаправленными нагрузками. Только так определяют важные эксплуатационные показатели, на основании которых производятся расчеты возможных нагрузок. Предусмотрены различные способы испытаний. Для них разработано специальное контрольное оборудование.

Для механических испытаний отбирают несколько серийных образцов сварных соединений. Заключение составляется на основании нескольких одинаковых исследований пластичности шва, устойчивости к разрушениям.

Сущность проведения механических испытаний сварных соединений

Разработан и регламентирован комплекс исследований швов, получаемых различными видами сварки. Среди испытаний сварных соединений выделяют группы методов испытаний сварных соединений с направленными напряжениями:

  • Статический способ предусматривает плавное увеличение разрушающей нагрузки. Испытания растянуты во времени, чтобы напряжение было постоянным.
  • Динамические действуют мгновенно, непродолжительный временной интервал.
  • Усталостные подразумевают многократное воздействие на исследуемый образец. Число циклов – величина, исчисляемая в десятки миллионов. Нагрузка изменяется по знаку, значению.

Статические испытания включают испытания стыковых сварных соединений, определяющие физические характеристики швов: твердость, ползучесть, растяжимость, пластичность, способность изгибаться и другие. Сварное соединение сравнивают с подобным образцом из целостного металла. Для исследований используют образцы с зачищенным и незачищенным валиком.

Условным пределом текучести называют напряжение, при котором образец увеличивается в длину на 0,2% от первоначальной длины. Испытание на изгиб необходимо для контроля пластичности диффузного слоя. Нагрузка на изгиб оказывается до появления первой трещины на продольном и поперечном сечении сварного соединения. Для экспериментов используют плоские и трубчатые образцы.

В ходе динамических испытаний соединений определяют склонность швов к усталостной деформации, прочности на ударный изгиб. Испытания проводят при разных условиях: нормальной, пониженной и повышенной температуры. Результаты заносятся в протокол в виде графиков, исследуются по типу кривых. В некоторых случаях применяются другие нормативно утвержденные исследования.

Твердость измеряется в области диффузного слоя и зоны термического влияния, оценивается структурная прочность металла на шлифах методами металлографии.

Исследуются три области:

  • диффузный слой шва;
  • зона термического влияния;
  • металл заготовки, не подвергающийся нагреву при сварке.

Проверяется обработанный и необработанный шовный валик. Для каждого вида сварки разработаны свои эталонные формы образцов. Выделяются области, в которых возможны остаточные напряжения.

Нормативные документы

Методика проведения механических испытаний, расчетные формулы регламентированы РД 26-11-08-86 (руководящий документ Минхимпрома). Отбор образцов, определение вида исследований производится в соответствии ГОСТ 6996-66. Для различных видов сварки регламентируется толщина контрольных образцов. Оговаривается метод подготовки сварных соединений к испытаниям сварных швов, условия проведения исследований. По результатам проверки составляется протокол, в котором указывается способ проверки образцов.

Преимущества и недостатки метода

Сначала об уникальных возможностях методики:

  • получают данные об эксплуатационных свойствах сварки;
  • изучают механические характеристики соединений;
  • устанавливают расчетные величины для определения максимальных нагрузок (данные необходимы для проектных работ);
  • проверяются возможности диффузного слоя, зоны термического влияния, где возможны внутренние дефекты.

При малых затратах на изучение образцов получают данные, по которым судят о прочностных характеристиках деталей серийного выпуска. Выбирают оптимальный вариант сварки различных сплавов.

Недостатки очевидны. Предполагается разрушение образцов, они не подлежат восстановлению. Такой метод контроля нельзя применять для приемки сварных соединений. Методики нужны для исследований на стадии запуска серий в производство.

Особенность механических испытаний сварных соединений – обязательность разрушения образцов под разнонаправленными нагрузками.

Какие свойства определяют при испытании сварных соединений

В разработанных методиках, утвержденных стандартом, указывается несколько способов испытания сварных швов для определения механических свойств диффузного слоя образцов. Кусочки термически соединенного металла подвергают воздействию разнонаправленных усилий. Определяют, под какой силой возникает деформация по шву. Учитываются:

  • трещины;
  • надрывы;
  • изменения первоначальной формы, линейных размеров.

Отдельно определяются технологически значимые свойства, влияющие на несущую способность, герметичность соединений.

Пластичность

Эксперименты на статическое растяжение определяют податливость диффузного слоя и зоны термического влияния к изменению первоначальной формы под воздействием удлиняющих усилий. От пластичности зависит способность к штамповке с вытягиванием. Показатель удлинения определяется методом измерения образцов до нагрузки и после нее. Расчеты производятся по отношении величины удлинения к первоначальным размерам. Каждую из прочностных характеристик стоит рассмотреть подробно. От каждой из них зависит качество сварки.

Для сварных опорных конструкций, испытывающих разнонаправленные напряжения, показатель прочности важен, от него зависит целостность сооружения. Прочностные характеристики определяются:

  • на изгиб, усилия прикладываются до момента критической деформации образца;
  • на усталость, количество циклов с различными нагрузками до разрушения.

Методика определение прочности на изгиб предусматривает три способа исследований:

  • искривление тонкой заготовки вокруг стандартной оправки до параллельности сторон U-образно изогнутого образца;
  • искривление под заданным углом;
  • двухсторонний изгиб до состояния сплющивания сторон.

Ударная вязкость

Динамические исследования на ударный изгиб проводятся с высокой скоростью изменения нагрузки. Соединение проверяется на хрупкость от удара, склонность к деформации или растрескивание. Для исследований готовят образцы с надрезанным шовным валиком. В месте надреза концентрируется напряжение при ударе копром маятникового типа. На основании показаний испытаний рассчитывается ударная вязкость, определяется как отношение работы по отталкиванию концентратора к площади сечения целого образца, до нанесения разреза. Для удобства проведения исследований на маятниковый копер наносится измерительная шкала.

Применяются три способа:

  • разработанный Роквеллом предусматривает вылавливание в металл жестких калиброванных образцов: стального шарика, прошедшего процедуру закалки, или алмазного конуса.
  • Шкала Веклера разработана на основе аналогичных испытаний с использованием алмазной пирамидки;
  • способ Бринелля основан на использовании стального шарика большой плотности и твердости.

На твердость стыковое соединение проверяют в двух направлениях:

  • по продольной оси;
  • от центра шва, направляясь к основному металлу сварной заготовки.

По Роквелу определяют твердость швов на тонком металле, листовой стали. По Бринелю и Векслеру – все остальные. Твердость металла зависит от пластичности. Чем тверже получается диффузный слой, тем меньше будет изгибаться. Это говорит о низкой пластичности сварного соединения.

Читайте также  Чем обезжиривать поверхность перед склеиванием: советы мастера

Заключение

Механические испытания применяются для серийного выпуска деталей, из каждой партии берется регламентированное стандартом число деталей, по исследованию одного образца заключение не выдается. Для единичных изделий лучше применять неразрушающий контроль сварных соединений, не повреждающий готовую деталь.

Показания механических испытаний сварных соединений во многом зависят от первоначального состояния сварных заготовок, наличия внутренних дефектов в металле. Поэтому перед определением технических характеристик проводится дефектоскопия заготовок и проверяемых сварных швов.

Источник:
http://svarkaprosto.ru/tehnologii/mehanicheskie-ispytaniya-svarnyh-soedinenij

Механические испытания сварных соединений

Не важно, с применением какой технологии был создан сварной шов. Он в любом случае будет обладать характерными свойствами, которые присущи всем сварным соединениям. Среди таких свойств прочность, твердость, пластичность и ударная вязкость. И от качества проведенных работ во многом зависит, насколько перечисленные выше свойства соответствуют нормам.

Но как определить, насколько высока прочность или пластичность шва? Для этого применяются разрушающие методы контроля качества швов. Они также называются просто механические испытания сварных соединений. В ходе этих испытаний швы подвергаются механической нагрузке, из-за чего могут деформироваться. Поэтому такой метод контроля называется разрушающим, ведь он влияет на прочность сварных соединений. В этой статье мы подробно расскажем, что такое механические испытания сварных соединений, какие есть достоинства и недостатки у такого метода контроля.

Общая информация

Итак, механические испытания сварных соединений — это комплекс различных механических операций, направленных на определение механических свойств шва. Как мы писали выше, данный метод контроля качества называется разрушающим, а потому применяется лишь при крупносерийном производстве. Ведь серийные изделия производятся по одному и тому же принципу, поэтому по одному образцу можно в целом судить о качестве партии.

Сейчас для разрушающего механического контроля применяются специальные агрегаты. Они не только испытывают швы на прочность, но и фиксируют полученный результат. Это существенно упрощает и ускоряет работу. Обычно проводят анализ только одной детали из всей партии, но для более точного результата можно подвергнуть испытаниям несколько деталей.

Механические испытания сварных соединений регулируются отдельным нормативным документом, это ГОСТ 6996-66. Также изучите документ РД 26-11-08-86., он дополнительно регулирует механические испытания. Мы в целом рекомендуем всем новичкам изучать нормативные документы, поскольку в них довольно подробно и точно расписано, как и при каких условиях нужно проводить разрушающий контроль швов. Именно из нормативных документов вы узнаете всю актуальную информацию, а никак из статей в интернете. Так что не поленитесь и прочтите два этих небольших документа.

Преимущества и недостатки

Механические испытания сварных соединений имеют свои плюсы о минусы. Их, в целом, немного, но мы все же расскажем, чтобы вы четко понимали, в каких ситуациях не стоит использовать такой метод контроля качества.

Итак, главный плюс — это возможность получения информации о всех механических свойствах шва. Вы гарантировано узнаете, насколько шов прочный и пластичный, какова его ударная вязкость и твердость. К тому же, это относительно недорогой способ контроля качества. Но только при условии, что используются бюджетные агрегаты для контроля, а не технически сложные приборы с множеством функций.

Еще один неочевидный плюс — нет нужды в отдельном контролере с профильным образованием. Можно просто делегировать обязанности сварщику. И обучение не займет много времени.

Теперь о недостатках. Самый главный недостаток — узкое применение такого метода контроля. Контролируемые детали зачастую не выдерживают механических испытаний и разрушаются. И если потеря в одну деталь несущественна при выпуске большой партии, то при изготовлении малых тиражей каждая деталь на вес золота.

Исследуемые свойства

У каждого металла есть свои физические свойства, исследовав которые можно понять, насколько деталь противостоит деформации. Проще говоря, насколько она будет долговечной. Чтобы это узнать деталь нужно подвергнуть той самой механической деформации. При этом главная задача — узнать максимальные возможности детали. Поэтому ее подвергают сильным нагрузкам до тех пор, пока она не разрушится.

Выше мы уже перечисляли свойства, которые можно определить методом механического разрушающего контроля. Это пластичность, твердость сварных швов, их прочность и ударная вязкость. Но далее мы расскажем подробнее, что кроется за каждым из этих терминов.

Итак, пластичность — это показатель металла, благодаря которому можно понять, насколько деталь подвержена изменению формы. Чтобы узнать показатель пластичности деталь подвергается механическому удлинению.

Далее твердость. Твердость металла — это показатель, благодаря которому мы можем узнать, насколько деталь противостоит проникновению в ее структуру другого предмета. Существует множество способов определения твердости (метод Бринеля, метод Роквелла, метод Виккерса и так далее). Всех их объединяет одно — в испытуемую деталь подается какой-нибудь предмет (стальной шарик, алмазный конус, алмазная пирамида) и фиксируется, насколько деталь сопротивляется этому механическому воздействию. В этом материале мы не будем подробно рассказывать о каждом методе проверки на твердость, поскольку их больше десятка и это тема для отдельной статьи.

Также испытывается прочность металла. Прочность и твердость во многом похожи, но не стоит их путать. Прочностью называют способность детали противостоять различным нагрузкам, в том числе растяжению. Детали помещают в специальный аппарат, который растягивает их в разные стороны. Такое испытание на прочность вполне эффективно. Но для большей эффективности детали могут дополнительно нагревать в ходе испытания. Для этих целей используется муфельная печь, встроенная в испытательную машину. С помощью печи можно заодно узнать и теплостойкость заготовки. Рекомендуется нагревать деталь не менее получаса, только результаты будут более достоверными.

Не забывайте и про ударную вязкость. Ударная вязкость — это способность металла к сопротивлению ударным нагрузкам. Деталь могут в прямом смысле испытывать с помощью механических ударов, пока не узнают ее предел. Самый распространенный способ проверки на ударную вязкость — это использование маятника, на конце которого расположено грузило. Маятник поднимают и затем опускают, в ходе падения он набирает определенную скорость и с силой бьет деталь.

Особенности

Как вы понимаете, такие физические методы контроля сварных швов наверняка приведут к разрушению детали. А разрушающий метод контроля сварных соединений не всегда приветствуется. Если у вас есть возможность произвести контроль, используя неразрушающие методы, то лучше выберите такой вариант. И не забывайте, что во время контроля нужно зафиксировать температуру воздуха в контрольной комнате, данные самой детали и все типы нагрузок, которым вы подвергаете металл.

Еще обращаем ваше внимание, что механические испытания сварных соединений должны проводиться исходя из начального состояния детали. Это очень важный нюанс, о котором не знают многие новички. Согласитесь, если деталь с многочисленными внешними дефектами подвергнуть тем же механическим нагрузкам, что и детали без дефектов, то первые образцы явно покажут себя не с лучшей стороны.

Чтобы избежать таких проблем нужно проводить простейший визуальный контроль качества. Сварщик с помощью своих глаз и пары простых инструментов (вроде лупы) может обнаружить все видимые дефекты, которые в последствии могут повлиять на результаты механического контроля. Так что не поленитесь и внимательно осмотрите деталь перед тем, как выполнять механический разрушающий контроль.

Мы также рекомендуем выбирать не одну, а несколько деталей из всей партии для проведения контроля. Наверняка все полученные результаты будут отличаться, но вы сможете составить некий усредненный результат и предоставить более точные данные касаемо целой партии изделий. Такой вариант контроля всегда предпочтительнее, чем исследование одной заготовки из огромной партии. Нужно понимать, что на производстве всегда есть человеческий фактор, даже если используются одни и те же сварочные аппараты с одними и теми же режимами работы. И взяв на контроль только одну деталь вы рискуете нарваться на брак или наоборот его не заметить среди большого количества выпускаемой продукции.

Вместо заключения

Если данный метод контроля кажется вам слишком сложным, то спешим вас разубедить. Существуют, например, металлографические исследования сварных соединений, когда досконально изучается структура шва с помощью микроскопа. И, поверьте, это куда сложнее, чем просто подвергнуть деталь механическим нагрузкам.

Да, механические испытания — это не лучший метод контроля качества, если производство не крупносерийное. Но он достаточно эффективный, если завод выпускает продукцию большими партиями. Можно подвергнуть контролю только одно изделие из всей партии и получить более-менее объективную картинку касаемо всех остальных изделий. А вы когда-нибудь проводили механические испытания сварных соединений? Расскажите об этом в комментариях ниже. Желаем удачи!

Источник:
http://svarkaed.ru/svarka/shvy-i-soedineniya/mehanicheskie-ispytaniya-svarnyh-soedinenij.html

Свойства сварного соединения

Все физические характеристики, для определения свойства соединения сварочных швов, определяются как комплексные механические свойства сварного соединения. Все эти параметры зависят от расчётного соотношения механических свойств металлической поверхности шва, а также обрабатываемой зоны металла и термических характеристик структуры металлического изделия. Если мы будем исходить из принципа понятия свойства металла сварного соединения, то швы и прочие соединения должны быть максимально приближены к структуре металла. Сварное соединение может считаться доброкачественным, только в том случае, если есть обеспечение величины прочности по параметрам предельности, а также по пределам текучести не меньше тех заданных свойств, которые характерны для достаточного запаса пластичности.

Правильный сварочный шов на изделии

Факторы, влияющие на характеристики прочности сварного соединения

Существует ряд технических особенностей, а также физических параметров, которые так или иначе завязаны на равнопрочности сварного соединения.

  • Определение текущего сварочного материала для процессе- электроды, флюсы, проволоки.
  • Естественные химические данные материала соединения.
  • Определение реального режима сварки.
  • Выбор методики проведения работ по пайке или резке металла.
  • Размерные данные материалы (в основном толщина).
  • Скорость охлаждения материала.
  • Возможная величина деформации в пластических характеристиках шва.

Именно этот регламент указывает на физические и технические параметры свойств металла, а также на их подгруппы. Этот момент необходимо учитывать для того, чтобы была возможность определить фактические свойства металла при переходе от легированного типа к нелегированному металлу, а также в обратном направлении.

что основные моменты на определение механических свойств сварных соединений зафиксированы в действующем регламентом положении ГОСТ 9467-60.»

Читайте также  Заточка дисковых пил своими руками – технология выполнения

Точно также сварные соединения методы определения механических свойств характерны для операций с использованием флюса и прочих технологий – ручная, дуговая, электродуговая автоматическая, полуавтоматическая.

Механические параметры испытаний

Единым регламентом, определяющий правила свойства сварного шва при однородном растяжении является ГОСТ 6996, в котором отмечены следующие факторы определения свойств:

  • Испытание статистическим или кратковременным растяжением.
  • Испытание на ударный вид образца, только для надрезанных образцов.
  • Стойкость при условии воздействия механизма старения механического способа.
  • Определение твёрдости для наплавленного участка, а также для сварного соединения.
  • Полное статическое напряжение с выдержанным параметром времени.
  • Испытание на статический способ загиба или изгиба.
  • Испытание полученного соединения на ударный разрыв.

В некоторых случаях методы исследования свойств сварных соединений определяются дополнительными способами, но при этом общая рекомендация заключается в использовании только проверенных методов по ГОСТ.

Обзор методов для определения свойств сварных швов

Самыми простейшими и доступными методами проверки качества, являются определение допуска чешуйчатости сварного шва по параметру временного сопротивления, данным фактической текучести изделия, относительным характеристикам удлинения, свойствам поперечного сужения. В качестве образцов используют цилиндрические формы металлов, применяемые для статического растяжения в соответствии с 4, 2 видом испытаний.

Чешуйчатость сварного шва

Самой простейшей и распространённой формой определения задачи, какие свойства определяют при испытании сварных соединений, является временное сопротивление. В качестве опытных образцов можно взять детали, частички металла, которые расположены в шовной или околошовной частях. Таким образом, можно определить однородность структуры металла. Но, для маленьких образцов лучше всего использовать другие методы, так как порою сложно понять, дальнейшие конструкционные свойства изделия. Временное сопротивление лучше всего использовать для больших и объёмных образцов.

Предел текучести может быть не определён для некоторых материалов, так явная неоднородность изделий и сварных швов, может преподнести искажённые данные. Текучесть, для того, чтобы решить вопрос, чем определяются свойства сварного соединения, используют только для однородной структуры металлического образца. Перед тем, как определение проходит фактическую стадию, рекомендуется подробно ознакомиться с положениями регламента.

В качестве экономии расхода затрат на операцию как влияют окислы в сварном шве на свойства сварного соединения, лучшей методикой признано определение твёрдости. Распределение окислов происходит корреляционным методом, который эффектов указывает зональность параметров твёрдого состояния сварного соединения.

Метод определения твёрдости также позволяет узнать дополнительные сведения о твёрдости всего состояния металла.»

Для оценки пластичности шва, используют метод статичности, точнее определение состояния на изгиб или загиб. В данном случае осуществляется изгиб, где до первого сопряжения появляется трещина, по которой можно определить технические характеристики шва и состояния металла в целом. Если трещина имеет показатели, не превышающие 20% общих фактических параметров состояния зоны, но не более 5 мм на любой площади, то такая пластичность не является критичной для металла по сварному шву. Все испытания осуществляются ровно до того состояния, который регулирует угол изгиба. То есть, изгиб или загиб осуществляются в любом случае до появления первой трещины и анализ НТД показывает общие параметры пластичности металлической конструкции.

Общие сведения по сварным соединениям

Как известно каждая группа металлов имеет свои параметры, которые отличаются по физическим, механическим и химическим данным. Для определения естественных критериев свариваемости, ориентируются на следующие показатели:

  • Каким образом возникает чувствительность металла при проведении сварочных работ.
  • Какую склонность к росту зерна имеет металл, при этом сохраняются как пластические, так и прочностные характеристики металла, в зоне термического обслуживания.
  • Химическая природа и структура металла, которая зависит от теплового эффекта и прочих данных обработки металлической поверхности.
  • Параметры сопротивляемости металла.

Это основные показатели, которые используют специалисты при расчётах.

Источник:
http://svarkaipayka.ru/tehnologia/drugoe/svoystva-svarnogo-soedineniya.html

Испытание сварного соединения на статическое растяжение

При испытании определяют:

  • • прочность наиболее слабого участка стыкового или нахлес- точного соединения;
  • • прочность металла шва в стыковом соединении.

Определение прочности наиболее слабого участка стыкового и нахлесточного соединения. При испытании сварного соединения на статическое растяжение определяют временное сопротивление наиболее слабого участка.

Испытания проводят, как правило, на образцах, толщина или диаметр которых равен толщине или диаметру основного металла. При испытании сварного соединения из листов разной толщины более толстый лист путем механической обработки должен быть доведен до толщины более тонкого листа.

Форма и размеры плоских образцов для испытания стыковых соединений должны соответствовать рис. 6.14 или 6.15 и табл. 6.2.

Рис. 6.14. Форма и размеры плоских образцов для испытаний стыковых соединений на статическое растяжение

Рис. 6.15. Форма и размеры плоских образцов с рабочей частью для испытаний стыковых соединений на статическое растяжение

Допускается применение цилиндрических образцов типов I, II, III, IV и V. Разрешается применение образцов по приложению 3 к ГОСТ 1497-84.

При испытании материалов высокой прочности разрешается изменять конструкцию захватной части образцов.

Форма и размеры образцов для испытания стыковых соединений стержней должны соответствовать рис. 6.16 и табл. 6.3.

Утолщение шва должно быть снято механическим способом до уровня основного металла. При удалении утолщения разрешается снимать основной металл по всей поверхности образца на глубину

Размеры образцов в мм

Толщина основного металла а

Ширина рабочей части b

Ширина захватной части образца Ь

рабочей части образца/

Общая длина образца L

Примечания: 1. Длину захватной части образца И устанавливают в зависимости от конструкции испытательной машины.

2. Размеры образца по толщине металла более 75 мм устанавливаются соответствующими техническими условиями.

Размеры образцов в мм

Диаметр стержня d

Длина рабочей части образца/

Общая длина образца L

Примечания: 1. Длину захватной части образца L устанавливают в зависимости от конструкции испытательной машины.

2. Размеры образца по толщине металла более 75 мм устанавливаются соответствующими техническими условиями.

до 15 % от толщины металла или диаметра стержня, но не более 4 мм. Удаление основного металла с поверхности образца производят только с той стороны, с которой снимают утолщение шва или имеется уступ. Строгать утолщение следует поперек шва. Острые кромки плоских образцов должны быть закруглены радиусом не более 1,0 мм путем сглаживания напильником вдоль кромки.

Разрешается строгать утолщение вдоль шва с последующим удалением рисок.

По требованию, оговоренному в стандартах или другой технической документации, разрешается производить испытание образцов типов XII, XIII и XIV без снятия утолщения. В этом случае в формулу подсчета временного сопротивления (п. 34 ГОСТ 1497—84) вводят значение площади сечения образца вне шва.

Рис. 6.16. Форма и размеры плоских образцов для испытаний стыковых соединений на статическое растяжение при недостаточной мощности разрывной машины

При недостаточной мощности разрывной машины разрешается испытывать плоские (рис. 6.17) или цилиндрические (рис. 6.18, 6.19) образцы. Величину захватной части образцов h устанавливают в зависимости от конструкции испытательной машины.

Разрешается применение цилиндрических образцов с другими рабочими диаметрами и другим типом захватной части в соответствии с приложением 1 к ГОСТ 1497—84. Допускается проведение испытаний на образцах типов XII—XVII с более низким классом чистоты обработки при условии соответствия характеристик механических свойств испытываемого металла всем установленным требованиям.

Рис. 6.17. Форма и размеры плоских образцов с рабочей частью для испытаний стыковых соединений на статическое растяжение при недостаточной мощности разрывной машины: а — толщина основного металла, мм

Рис. 6.18. Форма и размеры цилиндрических образцов для испытаний стыковых соединений на статическое растяжение при недостаточной мощности разрывной машины

Рис. 6.19. Форма и размеры цилиндрических образцов с рабочей частью для испытаний стыковых соединений на статическое растяжение при недостаточной мощности разрывной машины

Рис. 6.20. Образцы для контроля прочности сварных соединений труб

Для контроля прочности сварных соединений труб применяют образцы, приведенные на рис. 6.20. В этом случае в формулу подсчета временного сопротивления (п. 34 ГОСТ 1497—84) вводят значение площади сечения трубы вне шва. В случае сплющивания концов трубы, если этого требует конструкция разрывной машины, расстояние от оси шва до начала сплющиваемого участка должно быть не менее 2D.

По требованию, оговоренному в стандартах или другой технической документации, испытание образцов типа XVIII проводится со снятым утолщением шва.

Максимальный диаметр трубы при испытании образцов типов XVIII и IX определяется мощностью оборудования для испытаний.

При недостаточной мощности разрывных машин разрешается при диаметре трубы более 60 мм производить испытание стыкового соединения труб на образцах типов XII и XIII. Образец не выправляют. Для этой же цели разрешается применение образцов типов I—V. Металл шва располагают посередине рабочей части образца (рис. 6.21).

Сварные соединения, выполненные точечной сваркой и электрозаклепками, испытывают на срез путем растяжения образца, приведенного на рис. 6.22, или на отрыв растяжением образца, приведенного на рис. 6.23. При испытании электрозаклепок ширина образца во всех случаях равна 50 мм.

Размеры образца должны соответствовать значениям, приведенным в табл. 6.4.

Рис. 6.21. Образцы для контроля прочности сварных соединений груб диаметром более 60 мм при недостаточной мощности разрывной машины

Рис. 6.22. Форма и размеры образца с одной сварной точкой, выполненной точечной сваркой или электрозаклепками для испытания на срез:

а — толщина основного металла в мм; h — в зависимости от конструкции испытательных машин; / — длина рабочей части образца

Рис. 6.23. Форма и размеры образца с одной сварной точкой, выполненной точечной сваркой или электрозаклепками для испытания на отрыв растяжением образца

При испытании определяют разрушающую нагрузку на точку в килограммах (ньютонах).

Для предотвращения изгиба образцы типа XXI закрепляют в специальном приспособлении. Приспособление должно обеспечивать жесткость образца и возможность испытания его на разрывных машинах.

Источник:
http://studref.com/364779/stroitelstvo/ispytanie_svarnogo_soedineniya_staticheskoe_rastyazhenie