Очистка биогаза в домашних условиях

Очистка биогаза в домашних условиях

Написано 13 января 2018 от generator-prosto . Нет комментариев

С каждым днем количество потребления электроэнергии непрестанно растет. Возрастают и нормы потребления, однако рано или поздно сырье для выработки электричества закончится. Хорошей альтернативой различному сырью для электроэнергии может стать биогаз.

Что такое биогаз?

Биогаз – альтернативный, нетрадиционный источник энергии. Такой вид добычи энергии был известен еще во времена Древнего Китая, однако после долгих лет он был благополучно забыт. А как говориться: «Все новое – хорошо забытое старое».

Биогаз – продукт, получаемый в результате анаэробной ферментации органических веществ. Весь этот процесс происходит без участия воздуха.

Примером биогаза может служить газ, который выделяется при ферментации навоза или других бытовых отходов. Такой газ вполне может послужить источником энергии в сельском хозяйстве.

Как производится биогаз?

Производство биогаза — способ переработки различных органических и животных отходов с получением биотоплива и органических удобрений. Такой вид получения энергии – решение многих вопросов: экологии, капитала и агрохимии. В основе биохимической реакции лежат процессы гниения навоза и помета в анаэробных условиях. При этом используется группа анаэробных микробов, которые помогают преобразовывать фосфорсодержащие, калийсодержащие и азотсодержащие в чистые формы. Такие формы фосфора, калия и азота намного лучше всасываются растениями, а также полностью уничтожают вредителей. Конечно, для того, чтобы удобрять землю, лучше использовать отходы от производства биогаза. Так вы не используете ни нитраты, ни нитриты.

Емкость, в которой происходит получение биогаза, называется метантенком, или реактором. Если следовать правилам производства, выход биогаза составляет около двух-трех м3 с одного м3 органических отходов.

Факторы, которые оказывают влияние на процесс брожения:

  • уровень рН;
  • температура;
  • соотношение углерода, азота и фосфора;
  • площадь поверхности частиц сырья;
  • влажность среды;
  • частота подачи субстрата;
  • замедляющие вещества;
  • стимулирующие добавки.

Характеристика биогаза

Биогаз — смесь углекислого газа и метана. Является продуктом метанового брожения органических веществ животного и растительного происхождения. Метановое брожение является результатом природного действия анаэробных бактерий. Данный процесс протекает при температурах от 15 до 60 градусов в трех диапазонах:

  • 15-30 градусов — психрофильное;
  • 30-45 градусов — мезофильное;
  • 45-60 градусов — термофильное.

Распад органических веществ состоит из трех этапов:

  • растворение и гидролиз органических соединений;
  • ацидогенез;
  • метаногенез.

Влажность воздуха должна составлять от 10 до 98 %, оптимальная — 91-92 %. Содержание метана в биогазе зависит от химического состава сырья и может составлять 55-90 %.

Как очистить биогаз от примесей?

Одностадийная очистка биогаза, или регенеративная, включает в себя избавление от примесей, до тех пор, пока биогаз не приобретет состояние биометана. После такой очистки биометан может запросто служить топливом для мотора автомобиля или использоваться в системе газоснабжения.

Принцип действия данного способа заключается в следующем:

  • биогаз сжимается до давления в 9-11 бар;
  • такой газ подается в очистную колонну и под давлением холодной воды очищается;

Таким образом, углекислый газ и примеси сероводорода удаляются благодаря их хорошей растворимости в воде. Главное преимущество такой очистки – это низкие затраты, так как главным компонентом очистки биогаза является вода.

Как уменьшить содержание влаги в биогазе?

Уменьшение доли влаги в биогазе можно произвести только механическим путем при помощи специализированного оборудования. Самый простой метод очистки от влаги – это изменение температуры. Под воздействием холодной температуры влага конденсирует в пар. После такой процедуры содержание влаги в газе сократиться в 3-5 раз. Биогаз пропускают в подземную трубу, там вода опускается вниз. Затем температура повышается, что дает газу возможность подняться выше и согреться.

Где применяется биогаз?

  • Как уже было сказано, биогаз – сырьё для производства электроэнергии и автомобильного топлива.
  • На предприятиях использование биогаза поможет сэкономить огромную сумму. А все это потому, что вам не нужно будет строить газопровод, электрические линии, контейнеры для отходов. Такая установка поможет вам сэкономить около 30-40% от стоимости всей биогазовой системы.
  • Биогазовые сооружения могут использоваться в качестве очистных сооружений. Установив биогазовую установку на ферме, заводе или комбинате, вы не только сможете избавляться от мусора навсегда, но и еще получать за это сырьё для электроэнергии и топлива.

Как установить биогазовую установку своими руками?

Процесс производства биогаза в домашних условиях достаточно трудоемкий. Поэтому задумайтесь, сможете ли вы осилить данную задачу. Такая установка по производству биогаза поможет сэкономить вам деньги на топливе и электроэнергии.

Для производства биогаза нужна специальная установка, которую можно сделать из старых и уже ненужных вещей. Из старых выварок и металлических кастрюль можно создать реактор будущей установки. Оптимальной формой является цилиндр.

Главные требования к будущему реактору:

  • водо- и гидронепроницаемость. Смешивание воздуха и газа при брожении – просто опасно. Ваш реактор может треснуть или, в худшем случае, взорваться. Поэтому для пущей безопасности нужно установить герметичную прокладку между крышкой и корпусом;
  • достаточная теплоизоляция;
  • быть надежным. Во время реакций, благодаря которым и производится биогаз, выделяется большое количество газа. Давление может сыграть злую шутку с вашим реактором, и он может даже взорваться.

Для получения биогаза потребуется:

  • смешать 2 тонны навоза и 4 тонны перегноя;
  • добавить в смесь воды;
  • заложить смесь в яму и с помощью обогревательных установок разогреть до 45°С. Дальше смесь начнет бродить и без доступа воздуха сама разогреется до 80°С;

Чтобы давление газа не взорвало реактор, рекомендуется с помощью тросов прикрепить противовес. Шести тонн смеси установке хватает на шесть месяцев работы.

Если говорить простым языком, в яму устанавливается герметичный резервуар, который выполняет функцию реактора. В нем складываются органические отходы. В такой установке обязательным является отвод для газа.

Вам теперь остается только ждать, когда же микроорганизмы проделают свою работу и пробродят массу. После этого вы сможете получить биогаз. А отходы от производства биогаза могут стать отличным удобрением.

После того, как микроорганизмы все-таки перебродили эту массу, ее нужно выгрузить. Делать это нужно через специальное отверстие. Сброженную массу нужно временно поместить в емкость, которая должна быть по объему не меньше реактора.

Для самостоятельного производства биогазовой установки рекомендуется придерживаться следующей поочередности:

  • выберете место для установки будущего реактора, а также рассчитайте суточное количество отходов, чтобы определиться с объемом реактора;
  • проделайте монтаж загрузочной и выгрузочной труб и подготовьте котловану для биогазовой установки;
  • установить загрузочный бункер и газоотводную трубу;
  • установить крышку люка, которая будет использоваться для обслуживания и ремонта реактора.
  • проверить реактор на герметичность и теплоизоляцию.

Лучше всего делать стенки реактора из бетона, чтобы они были более герметичными и надежными. В массе, которую вы загружаете в биогазовую установку, не должно быть антибиотиков и растворителей. Они негативно сказываются на работе микроорганизмов.

Создавая такую установку, помните о технике безопасности. Не нужно ставить ее вблизи дома или хозяйственных помещений.

Источник:
http://generator-prosto.ru/populyarnyie-stati/poluchenie-biogaza-v-domashnih-usloviyah.html

Самостоятельное производство биогаза

Рост цен на энергоносители заставляет задуматься о возможности обеспечить себя ими самостоятельно. Один из вариантов — биогазовая установка. С ее помощью из навоза, помета и растительных остатков получают биогаз, который после очистки можно использовать для газовых приборов (плиты, котла), закачивать в баллоны и использовать его как топливо для автомобилей или электрогенераторов. В общем — переработка навоза в биогаз может обеспечить все потребности дома или фермы в энергоносителях.

Постройка биогазовой установки — способ самостоятельного обеспечения энергоресурсами

Общие принципы

Биогаз — продукт, который получается при разложении органических веществ. В процессе гниения/брожения выделяются газы, собрав которые, можно обеспечить нужды собственного хозяйства. Оборудование, в котором происходит данный процесс называю «биогазовая установка».

В некоторых случаях выход газа чрезмерный, тогда его запасают в газгольдерах — для использования в период его недостаточного количества. При грамотной организации процесса газа может быть слишком много, тогда его излишки можно продавать. Еще один источник дохода — перебродившие остатки. Это высокоэффективное и безопасное удобрение — в процессе сбраживания погибает большинство микроорганизмов, семена растений теряют свою всхожесть, яйца паразитов становятся нежизнеспособными. Вывоз на поля таких удобрений положительно влияет на урожайность.

Условия для выработки газа

Процесс образования биогаза происходит за счет жизнедеятельности разного рода бактерий, которые содержатся в самих отходах. Но для того чтобы они активно «работали» необходимо им создать определенные условия: влажность и температуру. Для их создания строятся биогазовая установка. Это комплекс устройств, основа которого — биореактор, в котором и происходит разложение отходов, который сопровождается газообразованием.

Организация цикла переработки навоза и растительных отходов в биогаз

Различают три режима переработки навоза в биогаз:

  • Психофильный режим. Температура в биогазовой установке от +5°C до +20°C. При таких условиях процесс разложения идет медленно,газа образуется намного, его качество низкое.
  • Мезофильный. На этот режим установка выходит при температуре от +30°C до +40°C. В этом случае активно размножаются мезофильные бактерии. Газа при этом образуется больше, процесс переработки занимает меньше времени — от 10 до 20 дней.
  • Термофильный. Эти бактерии размножаются при температуре от +50°C. Процесс идет быстрее всего (3-5 дней), выход газа — самый большой (при идеальных условиях с 1 кг завоза можно получить до 4,5 литров газа). Большинство справочных таблиц по выходу газа от переработки даны именно для этого режима, так что при использовании других режимов стоит делать корректировку в меньшую сторону.

Сложнее всего в биогазовых установках реализуется термофильный режим. Тут требуется качественная теплоизоляция биогазовой установки, подогрев и система контроля за температурой. Зато на выходе получаем максимальное количество биогаза. Еще одна особенность термофильной переработки — невозможность дозагрузки. Остальные два режима — психофильный и мезофильный — позволяют ежедневно добавлять свежую порцию подготовленного сырья. Но, при термофильном режиме, малый срок переработки позволяет разделить биореактор на зоны, в которых будет перерабатываться своя доля сырья с разными сроками загрузки.

Читайте также  Серый чугун: применение, свойства, структура, состав

Схема биогазовой установки

Основа биогазовой установки — биореактор или бункер. В нем происходит процесс брожения, в нем же скапливается полученный газ. Также есть бункер загрузки и выгрузки, выработанный газ выводится через вставленную в верхнюю часть трубу. Далее идет система доработки газа — ее очистка и повышение давления в газопроводе до рабочего.

Схема установки для переработки навоза в биогаз

Для мезофильных и термофильных режимов необходима также система подогрева биореактора — для выхода на требуемые режимы. Для этого обычно используются газовые котлы, работающие на произведенном топливе. От него система трубопроводов идет в биореактор. Обычно это полимерные трубы, так как они лучше всего переносят нахождение в агрессивной среде.

Еще биогазовая установка нуждается в системе для перемешивания субстанции. При брожении вверху образуется твердая корка, тяжелые частицы оседают вниз. Все это вместе ухудшает процесс газообразования. Для поддержания однородного состояния перерабатываемой массы и необходимы мешалки. Они могут быть механическими и даже ручными. Могут запускаться по таймеру или вручную. Все зависит от того, как сделана биогазовая установка. Автоматизированная система более дорога при монтаже, но требует минимума внимания при эксплуатации.

Простейшая биогазовая установка из пластиковой бочки

Биогазовая установка по типу расположения может быть:

Более затратны в установке заглубленные — требуется большой объем земельных работ. Но при эксплуатации в наших условиях они лучше — проще организовать утепление, меньше расходы на подогрев.

Что можно перерабатывать

Биогазовая установка по сути всеядна — перерабатываться может любая органика. Подходит любой навоз и моча, растительные остатки. Негативно влияют на процесс моющие вещества, антибиотики, химия. Их поступление желательно минимизировать, так как они убивают флору, которая занимается переработкой.

Сколько можно получить биогаза из различных отходов

Идеальным считается навоз КРС, так как в нем содержатся микроорганизмы в большом количестве. Если в хозяйстве нет коров, при загрузке биореактора желательно добавить некоторую часть помета, для заселения субстрата требуемой микрофлорой. Растительные остатки предварительно измельчаются, разводятся с водой. В биореакторе смешиваются растительное сырье и экскременты. Такая «заправка» перерабатывается дольше, но на выходе при правильном режиме, имеем наибольший выход продукта.

Определение местоположения

Чтобы минимизировать затраты на организацию процесса, имеет смысл расположить биогазовую установку неподалеку от источника отходов — возле построек, где содержится птица или животные. Разработать конструкцию желательно так, чтобы загрузка происходила самотеком. Из коровника или свинарника можно проложить под уклоном трубопровод, по которому навоз будет самотеком поступать в бункер. Это существенно облегчает задачу по обслуживанию реактора, да и уборку навоза тоже.

Наиболее целесообразно расположить биогазовую установку так, чтобы отходы с фермы могли поступать самотеком

Обычно строения с животными находятся на некотором отдалении от жилого дома. Потому выработанный газ нужно будет передавать к потребителям. Но протянуть одну газовую трубу дешевле и проще, чем организовывать линию по транспортировке и загрузке навоза.

Биореактор

К емкости для переработки навоза предъявляются довольно жесткие требования:

  • Она должна быть непроницаемой для воды и газов. Водонепроницаемость должна действовать в обе стороны: жидкость из биореактора не должна загрязнять почву, а подземные воды не должны изменять состояние сбраживаемой массы.
  • Биореактор должен обладать высокой прочностью. Он должен выдерживать массу полужидкого субстрата, давление газа внутри емкости, действующее снаружи давление грунта. В общем, при строительстве биореактора необходимо уделить особое внимание его прочности.

Для домашнего использования и сезонного производства биотоплива (в теплое время года) в малых объемах подойдет пластиковый бак с крышкой

Все эти требования по строительству биогазовой установки должны выполняться, так как они обеспечивают безопасность и создают нормальные условия для переработки навоза в биогаз.

Из каких материалов можно сделать

Стойкость к агрессивных средам — это основное требование к материалам, из которых можно сделать емкость. Субстрат в биореакторе может иметь кислую или щелочную реакцию. Соответственно материал, из которого изготавливают емкость, должен хорошо переносить различные среды.

Этим запросам отвечают не так много материалов. Первое что приходит на ум — металл. Он прочен, из него можно сделать емкость любой формы. Что хорошо, что использовать можно готовую емкость — какую-то старую цистерну. В этом случае строительство биогазовой установки займет совсем немного времени. Недостаток металла — он вступает в реакцию с химически активными веществами и начинает разрушаться. Для нейтрализации данного минуса металл покрывается защитным покрытием.

Отличный вариант — емкость биореактора из полимера. Пластик химически нейтрален, не гниет, не ржавеет. Только надо выбирать из таких материалов, которые выносят заморозку и нагрев до достаточно высоких температур. Стенки реактора должны быть толстыми, желательно армированными стекловолокном. Такие емкости недешевы, зато они служат долго.

Построить биореактор для выработки биогаза можно и из кирпича, но его надо хорошо заштукатурить с использованием присадок, обеспечивающих гидро- и газо- непроницаемость

Более дешевый вариант — биогазовая установка с емкостью из кирпича, бетонных блоков, камня. Для того чтобы кладка выдерживала высокие нагрузки, необходимо армирование кладки ( в каждом 3-5 ряду в зависимости от толщины стены и материала). После завершения процесса возведения стен для обеспечения водо- и газо- непроницаемости необходима последующая многослойная обработка стен как изнутри, так и снаружи. Стены штукатурят цементно-песчаным составом с добавками (присадками), обеспечивающими требуемые свойства.

Определение размеров реактора

Объем реактора зависит от выбранной температуры переработки навоза в биогаз. Чаще всего выбирается мезофильная — ее легче поддерживать и она предполагает возможность ежедневной дозагрузки реактора. Выработка биогаза после выхода на нормальный режим (порядка 2 дней) идет стабильно, без всплесков и провалов (при создании нормальных условий). В этом случае имеет смысл рассчитать объем биогазовой установки в зависимости от количества навоза, образующегося в хозяйстве за сутки. Все легко подсчитывается, исходя из среднестатистических данных.

Источник:
http://stroychik.ru/raznoe/proizvodstvo-biogaza

Способы обогащения биогаза путем удаления двуокиси углерода и прочих примесей

Метод коротцикловой безнагревной адсорбции заключается в физическом разделении биогаза с использованием активных углей, цеолитов, являющихся молекулярными ситами, углеродных молекулярных сит. Он еще именуется КБА/PSA (Короткоцикловая Безнагревная Адсорбция — Pressure Swing Adsorbtion). Она включает в себя четыре стадии:

  • Первая из них- это поглощение паров воды и диоксида углерода при давлении, составляющем примерно от шести до десяти атмосфер.
  • Вторая заключается в десорбции примесей при понижении давления.
  • Третья проходит при разряжении и дополнительного очищения сорбента от примесей путем промывания газом.
  • Четвертая состоит в увеличении давления.

Поэтому в рабочих установках имеется обычно от четырех до шести таких адсорберов, работающих параллельно. При таком способе доля метана в обогащенном биогазе может доходить до 97%. Использование дополнительных циклов промывки газа, а так же повторное прохождении биогаза через установку КБА/PSA, позволяет увеличивать выход метана, без привлечения дополнительных затрат. Для как можно более долгого использования сорбирующей загрузки в цикле промывки следует использовать не содержащий серу и просушенный сырой, или товарный биогаз. Иначе вода и сероводород, а также и другие примеси могут существенно снизить качество процесса адсорбции вплоть до его полной остановки. Однако, при таком способе углеродной сепарации возможны потери метана порядка от одного до пяти процентов, уносимого с потоком отводимого воздуха.

  • сероводорода,
  • углекислого газа,
  • аммиака,
  • а так же микроорганизмов и взвешенных веществ.

Они удаляются из системы при понижении давления воды. При таком способе обогащения биогаза отпадает необходимость в его предварительном просушивании и обессеривании, в отличие от процесса КБА/PSA . Давление и температура этого процесса регулируются в зависимости от концентрации диоксида углерода в исходном биогазе. Он легко поддается автоматизации и может быть непрерывным. Вместе с углекислым газом в воде, являющейся доступным и дешевым сорбентом, идет растворение сероводорода и аммиака. Это позволяет после последующего избавления от паров воды использовать биогаз для употребления в сетях природного газа, так как доля метана в нем после сепарации примесей может доходить до 98%. Однако, при такой технологии обогащения биогаза, наблюдается потери метана, составляющие около процента от общего количества.

  • Если этот процесс происходит при низком давлении и имеет своей целью извлечение только диоксида углерода, то в качестве промывочной жидкости используется моноэтаноламин.
  • При высоком давлении без регенерации в качестве промывочной жидкости применяется диэтаноламин.
  • Если же помимо отделения углекислоты должен удаляться и сероводород, то в этом случае применяются метилдиэтаноламин и триэтаноламин.

Регенерируется промывочная жидкость с помощью водяного пара, но так как она в основном является неполной, то для обеспечения работы установки требуются новые порции растворяющего реагента. Но, помимо высокой степени очистки, составляющей 99%, в технологии аминовой промывки наблюдаются минимальные потери метана, составляющие менее десятой доли процента. У этой технологии очистки имеются довольно большие перспективы, но так как она является энергозатратной, то она эффективна для обогащения небольших объемов биогаза или в местах, где имеются дешевые источники тепла. Но пока что она используется в основном в качестве ступени доочистки после адсорбции углекислого газа промыванием горячей водой. Эти три технологии обогащения являются на данный момент наиболее часто применяемыми, однако существуют еще несколько менее распространенных методов обогащения биогаза, имеющих свои особенности.

Прочие методы обогащения биогаза

К физическому методу промывки относится технология Selexol, которая напоминает промывку водой под давлением, только вместо нее используется специальный моющий раствор, Genosorb. Контакт с биогазом производится в этом случае при давлении порядка семи атмосфер, причем, вместе с углекислым газом и сероводородом из биогаза удаляется еще и вода. Однако, исходя из затрат, выгоднее очищать таким способом биогаз, подвергшийся осушению и удалению сероводорода. Регенерируется Genosorb поэтапным снижением давления и промывкой с атмосферным воздухом. Степень обогащения метана в этом случае доходит до 96%, а потери могут составлять до одного процента. К сравнительно новым разработкам в этом направлении относится и мембранная технология обогащения биогаза, находящаяся еще в стадии развития. Она основывается на разделении смеси газов, происходящей вследствие разной скорости диффузии их молекул, определяемой их размерами. Молекулы метана, имеющие более низкую молекулярную массу и размеры, чем молекулы диоксида углерода и более сложных углеводородов, диффундируют с большей скоростью. Поэтому этот процесс регулируется видами мембран и их поверхностей, а так же скоростью потока разделяемого биогаза и количеству проходимых им ступеней разделения. При этом он должен быть предварительно обессерен и высушен. Доля метана в обработанном биогазе при этой технологии на имеющихся установках достигает 96%. Мембранное разделение не требует использования химикатов, но для него необходимы большие затраты электроэнергии и потери метана достаточно велики. К еще одной из новых разработок относится криогенное разделение биогаза. Этот метод отделения диоксида углерода от метана заключается в сжижении газа до образования жидкой углекислоты, с последующим ее отделением при низких температурах путем вымораживания. Обрабатываемый по такой методике биогаз должен быть высушен и подвергнут обессериванию. Доля метана при этом методе составляет около 99%, а потери не более десятой доли процента, что говорит о перспективности развития этой технологии обогащения биогаза.

В стадию подготовки биогаза для подачи в сети природного газа входит очищение от кислорода, который может быть удален с помощью каталитических методов с использованием палладиево-платиновых катализаторов, или же химической сорбцией на медных контактах. В биогазе так же могут присутствовать следы остаточных газов, к которым относятся:

Они, как правило удаляются на стадиях обессеривания, просушивания и обогащения биогаза.

Источник:
http://nomitech.ru/articles-and-blog/sposoby_obogashcheniya_biogaza_putem_udaleniya_dvuokisi_ugleroda_i_prochikh_primesey/

Очистка биогаза как комплекс мер по удалению из биометана сероводорода, углекислого газа, влаги и других нежелательных примесей

В рамках обеспокоенности мирового сообщества возможным исчерпанием природных углеводородов, все больше сельских и фермерских хозяйств, тепличных комплексов, птицефабрик, коровников, свинарников, овчарен, спиртовых, винных и сахарных заводов внедряют биоэнергетические установки и устанавливают сопутствующее оборудование для очистки биогаза и доведения его до чистоты моторного топлива.

Презентационный ролик ООО «ПЗГО»

Общие сведения о биогазе и обоснование необходимости удаления нежелательных примесей

В общем понимании биогаз рассматривается как неочищенный комплекс газообразных и аэрозольных компонентов, возникающий в результате декомпозиции / гниения / бактериального разложения биомассы – сложносоставного органического конгломерата растительных и животных белков, аминокислот и других соединений, содержащих углерод.

В естественных условиях биогаз в огромных количествах образуется – в результате анаэробного гниения – на дне стоячих водоемов, в заболоченных местностях и имеет название «болотный газ» (англ. Marsh Gas). К сожалению, сбор газобиотоплива в таких условиях крайне затруднителен.

Интересный факт: блуждающие огни, наблюдаемые в ночное время в лесных топях, на кладбищах, на лугах – ни что иное как биометан, склонный, в некоторых условиях, к самовоспламенению.

Самовоспламенение метана над гладью озера Паасселка, Финляндия

Таким образом, в зависимости от исходного сырья, бактериального драйвера и условий сбраживания, состав биогаза может значительно варьировать, что накладывает определенные условия на выбор рационального способа его очистки от примесей. Для наглядности представим в таблице процентные диапазоны основных и балластных компонентов биологического газа.

Нередко встречающееся в технической литературе выражение «подготовка биогаза» практически всегда является синонимом очистки метана и полностью соотносится с удалением нежелательных примесей. Хотя, в некоторых редких случаях под подготовкой биологического газа также может подразумеваться его механическое очищение, (в том числе – от пара / тумана / влаги), а также сжижение биогаза в компрессорных установках для его последующей транспортировки.

Несмотря на то, что биометаногенез был открыт еще 1776 году, (а первые практические применения болотного «топлива» датируются 1814 годом), над промышленной фильтрацией биометана ученые задумались лишь в конце 19-го века, в эпоху широкомасштабного внедрения в Англии уличных фонарей, которые утилизировали газообразную смесь – т.н. светильный газ – получаемый в достаточных количествах в результате брожения сточных вод.

К текущему дню можно выделить 3 основных способа подготовки / фильтрации / обогащения биометана: мокрую абсорбцию, сухую десульфуризацию и сероочистку биогаза на этаноламинах (МЭА, ДЭА, МДЭА, аминов с пиперазиновой активацией и др). Рассмотрим подробнее каждый из методов.

Aбсорбционная очистка биогаза от сероводорода

Собственные исследования, на протяжении нескольких лет проводящиеся в лабораториях ООО «ПЗГО», показали, что правильное конструктивное исполнение газофильтующего аппарата и обусловленный конкретными обстоятельствами выбор сорбента позволяют достичь КПД биогазоочистки 96-99%.

Одно из исполнений абсорберной системы от ООО «ПЗГО»

Углубленный анализ химических свойств сольвентов и принципов сиборд-процессов определил метод щелочной абсорбции примесей – при прочих равных обстоятельствах – как максимально эффективный, простой и экономически выгодный подход к мокрому захвату H2S. И вот почему.

Щелочь одновременно вступает в реакцию с основными загрязнителями биометана – сероводородом и углекислотой – результируя в приемлемые, с точки зрения последующей утилизации, соединения.

Реакция щелочной сорбции (на примере водного раствора NaOH) в базовом случае проходит по следующим путям:

Гидроксид натрия NaOH – не единственная щелочь, используемая в качестве сольвента для сорбции сероводорода (и – в некоторой степени – углекислоты) из газа биологического генезиса. В качестве фильтрующего раствора могут использоваться и гидроксиды (и солевые растворы) других щелочных и щелочноземельных металлов, проявляющих основные свойства – карбонат натрия, гашеная известь, калиевый щелок, баритовая вода и др.

Установка для абсорбционной фильтрации биометана

Что касается аппаратного форм-фактора, в рамках которого процесс сорбции примесей проходит наиболее эффективно, то максимальная эффективность демонстрируется стационарно-насадочными абсорбционными системами колонного исполнения.

Технологическая установка состоит из следующих ключевых агрегатов:

  • колонна с наполнителем (непосредственно абсорбер со стационарным слоем);
  • биореактор, осуществляющий регенерацию раствора посредством добавления атмосферного кислорода;
  • сепаратор серы (сбор элементарной серы).

Установка исключает занесение воздуха в биогазовую смесь благодаря реализации принципа раздельной регенерации.

В качестве неподвижного насадочного слоя используется массив тел такой геометрии и топологии, при котором достигается высокая удельная поверхность сорбирующего слоя (на объем насадки): кольца Палля, кольца Рашига, седла Инталлокс или иные.

Принцип работы десульфуризирующей установки абсорбционного типа
  1. Загрязненный поток подается в колонны очистки, где в массообменной секции он контактирует с щелочным раствором, распыляемым поверх насадочного слоя: щелочной сольвент сорбирует H2S, (в процессе абсорбции происходит смещение показателя pH раствора в кислую сторону);
  2. В циркуляционном баке установлен pH-метр, которой – при снижении значения pH до заданного уровня – подает управляющий сигнал на насос-дозатор, установленный на емкости для приготовления активного фильтрующего раствора;
  3. Насос-дозатор подает концентрированную щелочь в абсорберную систему для поддержания заданного уровня pH.

Общая схема установки

Пожалуйста, ознакомьтесь более детально с принципами работы, диапазоном мощностей и габаритов абсорбционных систем, изготавливаемых в ООО «ПЗГО».

Адсорбционная очистка биогаза на цеолитах и иных твердых сорбентах

Другим методом сепарации сероводорода из биогазовой смеси является сухая адсорбция. Являя собой частный случай сорбции, адсорбирование сероводорода представляет собой захват H2S во внешнем (межфазном) слое поверхности адсорбционного материала.

Множественные практические эксперименты, нацеленные на выявление эффективных адсорбентов, способных активно поглощать сероводород, определили спектр фильтрующих материалов, с помощью которых сегодня осуществляется сухое обогащение биогаза.

Виды адсорбентов: слева направо – цеолит, активированный уголь, бурый железняк

Наиболее востребована сегодня очистка биогаза на цеолитах (природных и синтетических алюмосиликатах), на активированном угле специальной активации, силиконовых компаундах, на металлизированных пластиках / полимерах, некоторых сплавах и чистых металлах, в редких случаях – на буром железняке / болотном лимоните / гётите.

Рассматривая адсорбционную установку для очищения биогаза, следует коснуться ее главных характеристик и принципов.

Адсорберная система для сепарации сероводорода из биогазовой смеси

В процессе очистки микропоры адсорбционного материала – в результате улавливания элементарной серы – забиваются, поэтому через определенное время требуется его замена / регенерация.

Узнайте больше о регенерации адсорбента и ключевых принципах работы сухих каталитических газоочистителей.

Схема адсорберной системы. Перед адсорбером устанавливается теплообменник (показан желтым цветом). Две цилиндрические емкости – это два адсорбера, работающие поочередно (по достижении определенного показателя насыщения фильтра серой подача биогаза переводится на второй адсорбер, в то время как первый находится в режиме регенерации / замены адсорбционного субстрата).

Аминовая очистка биометана от сероводорода и двуокиси углерода на растворах МЭА, ДЭА и МДЭА

В рамках освещения подходов к фильтрации биометана будет нелишним упомянуть и аминовый метод. Аминовая хемосорбция кислых газов сегодня широко используется в нефтегазовой и нефтехимической промышленности.

Способность низших аминов растворяться в воде позволила создать промышленные абсорбенты, которые демонстрируют хорошие показатели в захвате сероводорода, углекислоты, кислосернистых соединений из газовых сред (природный газ, синтез-газ, и др).

Типы, концентрации аминов и соответствующие им назначения абсорбентов показаны в таблице.

Источник:
http://gas-cleaning.ru/article/biogas-purification

Биогазовая установка для частного дома: рекомендации по обустройству самоделки

Рачительный хозяин мечтает о дешевых энергоресурсах, эффективной утилизации отходов и получении удобрений. Домашняя биогазовая установка своими руками – это недорогой способ воплощения мечты в реальность.

Самостоятельная сборка такого оборудования обойдется в разумные деньги, а вырабатываемый газ станет хорошим подспорьем в хозяйстве: его можно использовать для приготовления пищи, отопления дома и других нужд.

Давайте попробуем разобраться в специфике работы этого оборудования, его преимуществах и недостатках. А также в том, возможно ли самостоятельно построить биогазовую установку и будет ли она эффективна.

Специфика получения биогаза

Биогаз образуется в результате брожения биологического субстрата. Его разлагают гидролизные, кислото- и метанообразующие бактерии. Смесь вырабатываемых бактериями газов получается горючей, т.к. содержит большой процент метана.

По своим свойствам она практически не отличается от природного газа, который используется для промышленных и бытовых нужд.

Биогаз – экологически чистое топливо, а технология его получения не оказывает особого влияния на окружающую среду. Более того, в качестве сырья для биогаза используют отходы жизнедеятельности, которые нуждаются в утилизации.

Их помещают в биореактор, где происходит переработка:

  • в течение некоторого времени биомасса подвергается воздействию бактерий. Срок брожения зависит от объема сырья;
  • в результате деятельности анаэробных бактерий выделяется горючая смесь газов, в состав которой входят метан (60%), углекислый газ (35%) и некоторые другие газы (5%). Также при брожении в небольших количествах выделяется потенциально опасный сероводород. Он ядовит, поэтому крайне нежелательно, чтобы люди подвергались его воздействию;
  • смесь газов из биореактора очищается и поступает в газгольдер, где хранится до момента использования по назначению;
  • газ из газгольдера можно использовать точно так же, как природный. Он поступает к бытовым приборам – газовым печам, отопительным котлам и т.п.;
  • разложившуюся биомассу необходимо регулярно удалять из ферментатора. Это дополнительные трудозатраты, однако усилия окупаются. После брожения сырье превращается в высококачественное удобрение, которое используют на полях и огородах.

Биогазовая установка выгодна для владельца частного дома только в том случае, если у него есть постоянный доступ к отходам животноводческих ферм. В среднем из 1 м.куб. субстрата можно получить 70-80 м.куб. биогаза, но выработка газа идет неравномерно и зависит от многих факторов, в т.ч. температуры биомассы. Это осложняет расчеты.

Чтобы процесс получения газа был стабильным и непрерывным, лучше всего строить несколько биогазовых установок, а субстрат в ферментаторы закладывать с разницей во времени. Такие установки работают параллельно, а сырье в них загружают последовательно.

Это гарантирует постоянную выработку газа, благодаря чему можно добиться его непрерывного поступления к бытовым приборам.

Самодельное биогазовое оборудование, собранное из подручных материалов, обходится гораздо дешевле установок промышленного производства. Его эффективность ниже, но вполне соответствует вложенным средствам. Если есть доступ к навозу и желание приложить собственные усилия для сборки и обслуживания конструкции, это очень выгодно.

Преимущества и недостатки системы

Биогазовые установки имеют немало преимуществ, но и недостатков хватает, поэтому перед началом проектирования и строительства следует все взвесить:

  • Утилизация отходов. Благодаря биогазовой установке можно получить максимум пользы от мусора, от которого все равно пришлось бы избавляться. Эта утилизация менее опасна для окружающей среды, чем закапывание отходов.
  • Возобновляемость сырья. Биомасса – это не уголь и не природный газ, добыча которых истощает запасы ресурсов. При ведении сельского хозяйства сырье появляется постоянно.
  • Относительная небольшое количество СО2. При получении газа окружающая среда не загрязняется, а вот при его использовании в атмосферу выделяется небольшое количество двуокиси углерода. Оно не опасно и не способно критично изменить экологию, т.к. его поглощают растения в процессе роста.
  • Умеренное выделение серы. При сгорании биогаза в атмосферу попадает небольшое количество серы. Это негативное явление, однако его масштабы познаются в сравнении: при сжигании природного газа загрязнение окружающей среды окислами серы гораздо больше.
  • Стабильная работа. Производство биогаза более стабильно, чем работа солнечных батарей или ветряков. Если энергией солнца и ветра нельзя управлять, то биогазовые установки зависят от деятельности человека.
  • Можно использовать несколько установок. Газ – это всегда риски. Чтобы снизить потенциальный ущерб в случае аварии, можно рассредоточить по участку несколько биогазовых установок. Если правильно спроектировать и собрать систему из нескольких ферментаторов, она будет работать стабильнее, чем один крупный биореактор.
  • Выгоды для сельского хозяйства. Для получения биомассы высаживают некоторые виды растений. Можно выбрать такие, которые улучшают состояние грунта. Например, сорго снижает эрозию почвы, улучшает ее качество.

У биогаза есть и недостатки. Хотя это относительно чистое топливо, оно все же загрязняет атмосферу. Также могут возникать проблемы с поставками растительной биомассы.

Безответственные владельцы установок нередко заготавливают ее так, что истощают землю и нарушают экологический баланс.

Расчет рентабельности установки

В качестве сырья для производства биогаза обычно используют коровий навоз. Одна взрослая корова может дать его столько, чтобы обеспечить 1.5 м.куб. топлива; свинья – 0.2 м.куб.; курица или кроль (в зависимости от массы тела) – 0.01-0.02 м.куб. Чтобы понять, много это или мало, можно сравнить с более привычными видами ресурсов.

Источник:
http://sovet-ingenera.com/eco-energy/bio-fuel/biogazovaya-ustanovka-svoimi-rukami.html

Очистка биогаза

Мало кто из обывателей имеет понятие о том, что представляет собой биогаз, и как происходит его очистка. Дабы исправить данный пробел, мы и подготовили данную публикацию.

Напомним, что под биогазом понимают вещество, получаемое посредством водородного или метанового брожения, так называемой биомассы. Именно биомасса сегодня является самым крупным возобновляемым ресурсом по использованию в мировом хозяйстве.

Если рассматривать метановое разложение биомассы, то оно может происходить под воздействием сразу 3 разновидностей бактерий. Интересно, что в цепочке питания последующие поколения бактерий кормятся продуктами жизнедеятельности предшествующих. Первая разновидность представлена бактериями гидролизными, вторая — кислотообразующими, третья — метанообразующими. Уточним, что одна из разновидностей биогаза — это, так называемый биоводород, в котором окончательным продуктом жизнедеятельности данных бактерий является водород, а вовсе не метан.

Сегодня во всем мире функционируют тысячи разных биогазовых установок. В настоящее время получение биогаза ведется в станциях самых разных масштабов. Это и малые очистные системы, и установки, обеспечивающие предприятия собственной энергией, и централизованные огромные энергопарки, специализацией которых является подача газа, а также электроэнергии непосредственно в сеть.

Интересно, что подобные системы сегодня можно практически везде обнаружить и на с/х фермах, и на спиртовых — сахарных заводах, и на мясокомбинатах, и т.д. В данном случае они используются в качестве очистных сооружений. Все обосновано, ведь биогазовые установки являются самыми активными и выгодными системами очистки, в отличие от иных, потребляющих энергию. Обобщим все дополнительные достоинства таких установок:

  • выработка тепла и электричества;
  • образование биометана и биоудобрений;
  • защита окружающей среды, ведь производство биогаза предотвращает выброс в атмосферу метана;
  • экономия капрасходов на возведение очистных сооружений, если строится новое предприятие.

Не будем вдаваться в тонкости функционирования биогазовых станций, лишь укажем, что сохраняют биогаз в емкостях для хранения, так называемых газгольдерах, где выравнивается давление, а также состав газа.

По газовой системе из него осуществляется непрерывная подача биогаза в дизель-газовый либо газовый теплоэлектрогенератор. Отметим, что газовая система отвечает и за осушку биогаза, и за его очищение от сероводорода, а также за, так называемую газоподготовку.

Если цель — не получение электроэнергиии, а, в первую очередь, газа, то тогда биогазовые станции комплектуются системами его очистки и производится так называемая доочистка газа. Технологии доочистки газа весьма разнообразны. Большинство из них, заметим, нацелены на очистку биогаза от двуокиси углерода. Наиболее распространены из них:

  • промывка газов сквозь жидкие поглотители (к примеру, воду);
  • вымораживание;
  • адсорбция при низких температурах.

Отметим, что все они в технологическом плане не очень сложны.

Обычно, процесс доочистки разделяется на несколько стадий. В начале газ осушается, затем сжимается до установленного рабочего давления. Следующий этап — очистка от примесей, затем охлаждение и отделение СО2. Последний, заметим, извлекают в жидком состоянии. Окончательная стадия доочистки газа предполагает его нагревание в экономайзере с помощью потока тёплого входящего биогаза. Такой прием позволяет уравнять на выходе температуры очищенного и входящего газа. Описанная система очистки газа основывается на технологии криогенного газоразделения. При ней сначала уменьшают содержание влаги, затем, сероводорода, а далее углекислоты.

Все просто, на начальном этапе биогаз перенасыщен влагой. Дабы очистить его охлаждают. Этого можно достичь, просто пропустив биогаз по подземной трубе для конденсата влаги при более низких показателях температуры. Когда газ снова подогревается, в нем содержание влаги уже существенно уменьшается. Данное высушивание биогаза в особенности полезно для применяемых счетчиков газа сухого, ведь они с течением времени, как правило, заполняются влагой.

Уменьшение сероводорода в биогазе (мы говорим о наиболее простом и экономичном способе) добиваются сухой доочисткой в спецфильтре. Как абсорбер применяют металлическую «губку», состоящую из деревянной стружки и смеси окиси железа. Интересно, что металлическая губка размером в 0,035 м 3 способна из биогаза «вытянуть» почти 4 кг серы. При содержании сероводорода в биогазе около 0,2%, этого объема губки хватит для очистки 2,5 тысяч метров кубических газа от сероводорода. Заметим, что для регенерирования губки, ее некоторое время держат на воздухе. Данную методику также отличает минимальная стоимость и незамысловатость эксплуатации фильтра, что в совокупности представляет надежную защиту и газгольдера, и компрессоров, и двигателей от коррозии, которую вызывает продолжительное воздействие сероводорода, присутствующего биогазе. С этой же целью применяют и окись цинка, которая является результативным абсорбентом сероводорода. Отметим, что последнее вещество характеризуется и дополнительными плюсами, т.к. выделяет и соединения органические серы (меркаптан, карбонил и т.п.).

В отличие от предыдущих, уменьшение углекислоты в биогазе представляет собой наиболее сложный и дорогостоящий процесс.

Источник:
http://biogaz-russia.ru/ochistka-biogaza/