Сварочный полуавтомат 30А — 160А своими руками

Сварочный полуавтомат 30А — 160А своими руками

Технические данные нашего сварочного аппарата — полуавтомата:
Напряжение питающей сети: 220 В
Потребляемая мощность: не более 3 кВа
Режим работы: повторно-кратковременный
Регулирование рабочего напряжения: ступенчатое от 19 В до 26 В
Скорость подачи сварочной проволоки: 0-7 м/мин
Диаметр проволоки: 0.8 мм
Величина сварочного тока: ПВ 40% — 160 А, ПВ 100% — 80 А
Предел регулирования сварочного тока: 30 А — 160 А

Всего с 2003 года было сделано шесть подобных аппаратов. Аппарат, представленный далее на фото, работает с 2003 года в автосервисе и ни разу не подвергался ремонту.

↑ Внешний вид сварочного полуавтомата


Вообще


Вид спереди


Вид сзади


Вид слева

↑ Схема и детали сварочника

В качестве выключателя питания и защиты применен однофазный автомат типа АЕ на 16А. SA1 — переключатель режимов сварки типа ПКУ-3-12-2037 на 5 положений.

Резисторы R3, R4 — ПЭВ-25, но их можно не ставить (у меня не стоят). Они предназначены для быстрой разрядки конденсаторов дросселя.

Теперь по конденсатору С7. В паре с дросселем он обеспечивает стабилизацию горения и поддержания дуги. Минимальная емкость его должна быть не менее 20000 мкф, оптимальная 30000 мкф. Были испробованы несколько типов конденсаторов с меньшими габаритами и большей емкостью, например CapXon, Misuda, но они себя проявили не надежно, выгорали.

Силовые тиристоры на 200А взяты с хорошим запасом. Можно поставить и на 160 А, но они будут работать на пределе, потребуется применение хороших радиаторов и вентиляторов. Примененные В200 стоят на не большой алюминиевой пластине.

Реле К1 типа РП21 на 24В, переменный резистор R10 проволочный типа ППБ.

При нажатии на горелке кнопки SB1 подается напряжение на схему управления. Срабатывает реле К1, тем самым через контакты К1-1 подается напряжение на электромагнитный клапан ЭМ1 подачи кислоты, и К1-2 — на схему питания двигателя протяжки проволоки, и К1-3 — на открытие силовых тиристоров.

Переключателем SA1 выставляют рабочее напряжение в диапазоне от 19 до 26 Вольт (с учетом добавки 3 витков на плечо до 30 Вольт). Резистором R10 регулируют подачу сварочной проволоки, меняют ток сварки от 30А до 160 А.

При настройке резистор R12 подбирают таким образом, чтобы при выкрученном R10 на минимум скорости двигатель все же продолжал вращаться, а не стоял.

При отпускании кнопки SB1 на горелке — реле отпускает, останавливается мотор и закрываются тиристоры, электромагнитный клапан за счет заряда конденсатора С2 еще продолжает оставаться открытым подавая кислоту в зону сварки.

При закрытии тиристоров исчезает напряжение дуги, но за счет дросселя и конденсаторов С7 напряжение снимается плавно, не давая сварочной проволоке прилипнуть в зоне сварки.

↑ Мотаем сварочный трансформатор

Начинаем намотку — первичка. Первичка содержит 164 + 15 + 15 + 15 + 15 витков. Между слоями делаем изоляцию из тонкой стеклоткани. Провод укладывать как можно плотнее, иначе не влезет, но у меня обычно с этим проблем не было. Я брал стеклоткань с останков всё того же дизель-генератора. Все, первичка готова.

Продолжаем мотать — вторичка. Берем алюминиевую шину в стеклянной изоляции размером 2,8×4,75 мм, (можно купить у обмотчиков). Нужно примерно 8 м, но лучше иметь небольшой запас. Начинаем мотать, укладывая как можно плотнее, мотаем 19 витков, далее делаем петлю под болт М6, и снова 19 витков, Начала и концы делаем по 30 см, для дальнейшего монтажа.
Тут небольшое отступление, лично мне для сварки крупных деталей при таком напряжении было маловато току, в процессе эксплуатации я перемотал вторичную обмотку, прибавив по 3 витка на плечо, итого у меня получилось 22+22.
Обмотка влезает впритык, поэтому если мотать аккуратно, все должно получиться.
Если на первичку брать эмальпровод, то потом обязательно пропитка лаком, я держал катушку в лаке 6 часов.

Собираем трансформатор, включаем в розетку и замеряем ток холостого хода около 0,5 А, напряжение на вторичке от 19 до 26 Вольт . Если все так, то трансформатор можно отложить в сторону, он пока нам больше не нужен.

Вместо ОСМ-1 для силового трансформатора можно взять 4шт ТС-270, правда там немного другие размеры, и я делал на нем только 1 сварочный аппарат, то данные для намотки уже не помню, но это можно посчитать.

↑ Будем мотать дроссель

Берем трансформатор ОСМ-0,4 (400Вт), берем эмальпровод диаметром не менее 1,5 мм (у меня 1,8). Мотаем 2 слоя с изоляцией между слоями, укладываем плотненько. Дальше берем алюминиевую шину 2,8×4,75 мм. и мотаем 24 витка, свободные концы шины делаем по 30 см. Собираем сердечник с зазором 1 мм (проложить кусочки текстолита).
Дроссель также можно намотать на железе от цветного лампового телевизора типа ТС-270. На него ставится только одна катушка.

У нас остался еще один трансформатор для питания схемы управления (я брал готовый). Он должен выдавать 24 вольта при токе около 6А.

↑ Корпус и механика

В подкатушечнике для создания тормозного усилия применена пружина, первая попавшаяся под руку. Тормозной эффект увеличивается сжиманием пружины (т. е. закручиванием гайки).



 ▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.

 ▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.

Похожие новости

Комментарии (44)

Информация
Вы не можете участвовать в комментировании. Вероятные причины:
— Администратор остановил комментирование этой статьи.
— Вы не авторизовались на сайте. Войдите с паролем.
— Вы не зарегистрированы у нас. Зарегистрируйтесь.
— Вы зарегистрированы, но имеете низкий уровень доступа. Получите полный доступ.

Источник:
http://datagor.ru/practice/diy-tech/1984-svarochnyy-poluavtomat-diy.html

Расчет трансформатора для сварочного полуавтомата

Подбор правильных параметров техники при сварке является очень важным делом. Расчет трансформатора для сварочного полуавтомата имеет ярко выраженную специфику. Здесь могут использоваться как типовые схемы, так и другие варианты, которые подходят по параметрам. Для промышленных трансформаторов можно применять стандартные методики расчета, так как серийно выпускающиеся модели имеют одинаковые параметры, такие как напряжение сварочного трансформатора, тогда как для самодельных изделий такие методы не будут являться действительными. Это касается не только параметров изделия, но и материалов, которые применяются при создании трансформатора. Во втором случае получается намного больше погрешностей, что также следует учитывать. Стандартные методы расчета основаны на методике, которая может определить самое оптимальное значение геометрических и обмоточных параметров трансформатора. Но у данных методик имеются свои недостатки, так как если имеется какой-либо выход за стандартные параметры, то все расчеты могут оказаться недействительными из-за особенностей конструкции и используемых материалов. С учетом современного разнообразия техники, которую можно встретить на рынке для промышленного и частного использования, расчет сварочного трансформатора может оказаться весьма затруднительным.

Трансформатор для сварочного полуавтомата

Ведь не зря, одним из первых дел при расчете является определение количества и вид используемого железа. Таким образом, нужно определить значение наружного и внутреннего диаметра сердечника. Как правило, минимальное значение внутреннего диаметра составляет от 12 см. В некоторых случаях это значение может быть меньше, если обмотка выйдет очень плотной. Проблема здесь может возникнуть при размещении вторичной обмотки, так как в ином случае она может и не поместиться, если диаметр будет меньше предложенного значения. Минимальные рекомендуемые значения имеются и при выборе площади сердечника.

Сварочный трансформатор для сварки полуавтоматом

Стоит отметить, что подавляющее большинство бытовых сварочных аппаратов, куда можно отнести и некоторые модели полуавтоматов, имеют достаточно простую структуру. Они состоят в большинстве случаев из источников переменного тока, что делает их боле дешевыми. Также становится легче ремонт и обслуживание сварочных трансформаторов, если с ними что-то случится. Сама система полуавтомата практически не влияет на принцип действия трансформатора, так как относится к удобству подачи электрода или проволоки. В самых простых моделях используется однофазный трансформатор, который разработан специально для сварки.

На чем базируется расчет сварочного трансформатора

Основными положениями, на которых состоит расчет трансформатора для сварочного полуавтомата сварочного аппарата, являются те, на которых основан принцип его действия. Главным элементом системы является понижающий трансформатор. Этот элемент позволяет изменить стандартное сетевое напряжение 220 В, на пониженное, которое требует холостой ход сварочного трансформатора – 60 В. Ток может регулироваться исходя из вольтамперных характеристик самой системы. Средние характеристики тока для электрода в 3 мм составляет 120 А. Именно в этом случае и оказывается важным расчет сварочного аппарата, ведь когда стержень начинает плавиться при определенном значении силы тока, то он еще и нагревает проволоку обмотки и сердечник трансформатора при определенных значениях. Таким образом, для вычисления оптимальной мощности трансформатора следует узнать рабочее значение, которое можно определить по рабочей силе тока. Для этого применяют формулу U2 = 20+0,04*I2. Здесь:

  • U2 – напряжение, которое имеется на вторичной обмотке;
  • I2 максимальный сварочный ток, который может выдать аппарат.

После этого можно перейти к сердечнику. Это центральная часть как простого сварочного аппарата, так и полуавтоматического. Состоит он из металлических пластин. Эти пластины в совокупности могут выдержать определенную нагрузку параметров тока. Данный параметр называется «габаритная мощность». Здесь имеется прямая зависимость от того, какие размеры занимает сердечник. Вычислить габаритную мощность можно зная такие параметры как напряжение холостого хода сварочного трансформатора. Рассчитать все это можно при помощи формулы Uхх = U2S. В данном случае S является площадью сечения вторичной обмотки. Чтобы узнать зависимость площади от диаметра используемого проводника, то следует использовать формулу S = πd 2 /4.

Также можно просто воспользоваться уже имеющимися готовыми таблицами:

Допустимые нагрузки по току для медных проводов

Источник:
http://svarkaipayka.ru/oborudovanie/transformator/raschet-transformatora-dlya-svarochnogo-poluavtomata.html

Расчет сварочного трансформатора для самостоятельной сборки

Соединение металлических деталей электрической дугой известно уже более 120 лет, но немногие знают все тонкости этого процесса, что очень важно для того, чтобы сделать расчет сварочного трансформатора для простейшего аппарата и полуавтомата.

Читайте также  Основная классификация сварных швов для разных видов сварки

1 На чем базируется расчет сварочного трансформатора?

Прежде, чем разбираться в формулах, давайте рассмотрим принцип действия простейшего аппарата для дуговой сварки. Основой такого агрегата является понижающий трансформатор, позволяющий изменить входящее напряжение, соответствующее в быту 220 В, на более низкое, до 60 В для так называемого холостого хода или, иначе, состояния покоя. То, какие виды электродов можно будет использовать с устройством, зависит от силы тока, которая должна быть в пределах 120-130 А для наиболее популярного трехмиллиметрового диаметра расходного материала.

И вот здесь как раз требуются расчеты, поскольку, если стержень электрода плавится при определенной силе тока, значит, она будет в той же степени нагревать и сердечник трансформатора, а также проволоку обмотки. Следовательно, для того, чтобы узнать оптимальную мощность трансформатора, нам нужно сначала вычислить рабочее напряжение, ориентируясь на рабочую силу тока. Для этого существует формула U2 = 20 + 0,04I2, где U2 – напряжение на вторичной обмотке, а I2 – выдаваемый аппаратом максимальный сварочный ток.

Теперь вернемся к сердечнику, который не зря так называется, поскольку является сердцем трансформатора, как самого простого, так и полуавтомата. Он составляется из металлических пластин, которые способны выдержать определенную нагрузку по мощности тока. Это допустимое значение зависит от размеров сердечника и называется габаритной мощностью, которую можно найти, зная значение напряжения холостого хода. Последнее высчитывается по формуле Uхх = U2S, где S – площадь сечения провода вторичной обмотки. Зависимость этой площади от диаметра проводника определяем по формуле S = πd 2 /4, или по следующим таблицам:

Допустимые токовые нагрузки на провода с медными жилами

Допустимые токовые нагрузки на провода с алюминиевыми жилами

2 Расчет для сварочного трансформатора по формулам и онлайн

Итак, у нас есть все необходимые параметры для того, чтобы вычислить габаритную мощность сердечника. Далее работаем по формуле Pгаб = UххI2cos(φ)/η, где φ – угол смещения фаз между напряжением и током (можно принять величину 0.8), а η – КПД (принимаем 0.7). Остается найти допустимую мощность, которую выдержит аппарат при длительной работе. При этом учитываем, что коэффициент продолжительности работы (обозначим его ПР) составляет около 20 % от времени подключения трансформатора к сети.

Поэтому считаем следующим образом: Pдл = U2I2(ПР/100) 0.5 0.001, или, иначе Pдл = U2I2(20/100) 0.5 0.001, что соответствует Pдл = U2I20.00045. В целом продолжительность работы и сила сварочного тока практически не связаны. В большей степени на время дугового режима влияет сечение проволоки обмотки и качество изоляции, а также то, насколько плотно и, главное, ровно, уложены витки. Следовательно, теперь мы можем узнать электродвижущую силу одного витка в вольтах, используя формулу E = Pдл0.095 + 0.55.

Далее, получив результат эмпирической зависимости по последней формуле, высчитываем оптимальное количество витков для обмотки, как первичной, так и вторичной. Для той и другой используем две формулы, соответственно N1 = U1/E, где U1 – входящее напряжение сети, а N2 = U2/E. Сила сварочного тока регулируется увеличением или уменьшением расстояния между первичной и вторичной обмотками: чем оно больше, тем ниже мощность на выходе. Тем, кто делает приведенный расчет с целью самостоятельной сборки трансформатора, а не для приобретения готового сварочного полуавтомата, понадобится еще и вычисление габаритов сердечника.

Площадь сечения металла определяется по формуле S = U210000/(4.44fN2Bm), где f – промышленная частота тока (принимаем за 50 Гц), Bm – индукция магнитного поля (принимаем за 1.5 Тл). Теперь можно узнать ширину стальной пластины в пакете трансформатора: a = (100S /(p1kc)) 0.5 , где за p1 принимаем диапазон значений 1.8-2.2 (рекомендуется среднее), kс – коэффициент заполнения стали (соответствует 0.95-0.97).

Исходя из значения ширины пластины, выясняем толщину пакета пластин плеча, для чего используем формулу b = ap1, а затем и ширину окна магнитопровода c = b/p2, где p2 имеет диапазон значений 1–1.2 (рекомендуется максимальное). К слову, если уж мы взялись измерять габариты, вспомним про коэффициент заполнения стали, который обозначает промежутки между пластинами. С учетом этого показателя площадь сечения сердечника будет несколько иной, поэтому назовем ее измеряемой величиной и определим заново. Формула для этого потребуется следующая: Sиз = S/kc. В большинстве случаев эти расчеты не нужны при наличии онлайн-калькулятора.

3 Как сделать расчет самодельного тороидального сварочного трансформатора?

По сути, тор – это объемное геометрическое тело, хотя в математике бытует понятие «поверхность». То есть это даже не фигура, а замкнутая поверхность, имеющая одну общую для любой размещенной на ней точки сторону. Но, если не вдаваться в дебри терминологии, тор – это бублик, или окружность, вращающаяся вокруг некой не пересекающей ее оси, с которой располагается в одной плоскости. Именно в форме такого бублика может быть выполнен трансформатор-тороид.

Основная его характеристика – высокий КПД при небольших, в сравнении с другими типами сердечников, размерах. Что и является основополагающим критерием для предпочтения данной формы самодельных трансформаторов. Основное отличие тороидального трансформатора от прочих – прокладка только межобмоточной изоляции наряду с внешней. Межслоевая не делается по той простой причине, что витки провода, проходя сквозь отверстие тора, создают дополнительную толщину внутреннего диаметра, что исключает использование лишних слоев изоляции.

Именно это значительно усложняет сборку тороида, и потому он редко устанавливается в корпусе полуавтомата, где чаще можно увидеть стержневые сердечники. Чтобы не возникали пробивания, применяются провода с повышенной прочностью изоляционного покрова. В качестве прокладки можно взять лавсан или ленту ФУМ (фторопластовую).

Для определения габаритной мощности сердечника, выполненного в виде тора, нам достаточно узнать две площади: окна и сечения.

Первую вычисляем по формуле Sокна = 3.14(d 2 /4), где d – внутренний диаметр тора. Вторая формула выглядит следующим образом: Sсеч = h((D-d)/2), здесь D – внешний диаметр «бублика». Далее остается только рассчитать габаритную мощность трансформатора, для чего используем простейший способ умножения двух получившихся ранее результатов. Иными словами, Pгаб[Вт] = Sокна[кв.см] * Sсеч[кв.см]. Дальнейшие вычисления ориентируем согласно таблице:

Источник:
http://tutmet.ru/raschet-svarochnogo-transformatora-kalkulyator-onlain.html

Как осуществить расчет сварочного трансформатора по параметрам сердечника

Всевозможных схем сварочных агрегатов от простейших и до инверторов существует превеликое множество. Для создания самодельного сварочного аппарата лучше выбрать простую и высоконадежную схему, которая не содержит сложной и дорогой электроники. Но в любом случае, кроме схемы, потребуется предварительный расчет сварочного трансформатора. Только после этого можно приступать к его практическому изготовлению.

Схема сварочного трансформатора.

Специфика расчета таких трансформаторов заключается в том, что параметры их компонентов в большинстве случаев подбираются в соответствии с уже имеющимися деталями – чаще всего с данными магнитопровода. Поэтому стандартные методы расчета, которые разработаны для промышленного трансформатора, для самодельного сварочника не всегда применимы. Особенно ярко это проявляется при выходе того или иного параметра за стандартные границы.

Основные характеристики и структура сварочного трансформатора

Выбор максимального значения сварочного тока

Таблица 1. Характеристики сварочных трансформаторов.

Прежде всего, следует определиться, на какое максимальное значение сварочного тока будет рассчитываться трансформатор. Взаимосвязь между толщиной свариваемых металлов, диаметром электродов и сварочным током показана в таблице 1. Учитывая, что используя однофазный трансформатор, получить ток более 200 А практически нереально, домашнему мастеру приходится ограничиваться электродами диаметром не более 4 мм. Чаще всего 3 мм.

Следует установить наиболее подходящий верхний предел сварочного тока и наматывать обмотки под соответствующую ему мощность. При этом следует ясно понимать, что с ее ростом возрастают вес сердечника, сечение и стоимость провода. Кроме того, более мощный трансформатор сильнее греется и быстрее изнашивается. Да и не каждая сеть выдержит такую нагрузку. Золотая середина – аппарат с выходным током 110-120 А.

Прочие рабочие характеристики

Трёхфазный стержневой трансформатор.

Максимальная величина выходного тока – главная характеристика любого сварочника, но наряду с нею следует определиться и с другими важными параметрами:

  1. Диапазон регулирования величины выходного тока. В самодельных аппаратах обычно создается ряд ступеней – от 50 А до верхнего предела.
  2. Напряжение холостого хода. Чем оно выше, тем легче зажечь дугу. Из соображений безопасности не должно превышать 80 В.
  3. Номинальное выходное напряжение, которое необходимо для устойчивого горения дуги. Для сварки тонких металлов это напряжение должно быть более низким и наоборот.
  4. Мощность – потребляемая и выходная. Чем меньше их разность, тем выше КПД изготовленного трансформатора, тем он лучше.
  5. Номинальный рабочий режим характеризует продолжительность непрерывной работы. Для сварочного трансформатора собственного изготовления он не превышает 20-30%. Номинальный режим 20% означает, что из 10 минут рабочего времени можно варить 2 минуты, а остальные 8 трансформатор должен охлаждаться на холостом ходу.

Устройство сердечника трансформатора

В зависимости от формы магнитопровода различают следующие разновидности трансформаторов:

Основные понятия и классификация трансформаторов.

На стержневом трансформаторе обмотки окружают стержни сердечника. На броневом, напротив, магнитопровод частично обхватывает обмотки. В тороидальном обмотки распределяются по магнитопроводу равномерно.

Броневые и стержневые сердечники изготовляются из отдельных тонких, изолированных друг от друга пластин. Материал – трансформаторная сталь. Тороидальные наматываются в виде рулона из ленты, изготовленной из той же трансформаторной стали.

Важнейшей характеристикой любого сердечника является площадь его поперечного сечения. Именно от нее в очень большой степени зависит мощность трансформатора. У стержневого магнитопровода под площадью его поперечного сечения понимают площадь любого из стержней, а у тороидального – тора. У броневого – это площадь сечения его среднего стержня.

КПД трансформаторов стержневого типа выше, чем броневых. Кроме того, у них лучше условия охлаждения обмоток и, следовательно, допустимые плотности тока в обмотках. Поэтому сварочные трансформаторы, как правило, бывают стержневыми. Но все чаще для его изготовления стараются применить тороидальный сердечник. Дело в том, что масса и габариты такого сварочника почти в полтора раза меньше, чем стержневого при прочих равных параметрах. Но здесь возникают трудности с его намоткой.

Читайте также  Применение отходов древесины, что сделать и получить - вторичная переработка

Расчет сварочного трансформатора

Схема намотки сварочного трансформатора.

Поскольку при самостоятельном изготовлении сварочника приходится довольствоваться имеющимися в распоряжении магнитопроводами, производить строгий расчет не имеет смысла. Чаще всего достоверно неизвестны магнитные свойства и другие характеристики трансформаторной стали. Одной магнитной проницаемости, которую нетрудно определить экспериментально, для точного расчета недостаточно. Поэтому рациональнее ограничиться приблизительным расчетом.

Сначала производится оценка потребной электрической мощности. Основное мерило здесь – максимальная величина сварочного тока, которая, в свою очередь, определяется наибольшим диаметром электрода (см. таблицу 1). Электрическая мощность сварочника:

где Uд – напряжение горения дуги (обычно берется значение 25 В), Iм – максимальный сварочный ток. Например, для трансформатора, рассчитанного на ток до 150 А, электрическая мощность должна составлять:

Р = 25 В * 150 А = 3750 Вт.

Габаритная мощность трансформатора, зависящая от параметров магнитопровода, должна быть обязательно больше электрической. Именно габаритную мощность способен «потянуть» сердечник. При расчетах в качестве исходной чаще всего используется следующая формула, связывающая габаритную мощность с размерами сердечника:

Схема трансформатора с первичной и вторичной обмоткой.

где Sо – площадь окна сердечника, Sс – площадь его поперечного сечения, Рг – габаритная мощность, Вс – магнитная индукция поля в сердечнике, j – плотность тока в проводах обмоток, f – частота переменного тока, kо– коэффициент заполнения окна, kc– коэффициент заполнения сердечника.

Sо и Sс находят прямыми измерениями габаритов сердечника. Например, для стержневого магнитопровода (см. рис. 2) Sо= h * l, Sс= а * b. С достаточной для практического расчета точностью можно считать, что:

  • Вс = 1,42 Тл;
  • kо= 0,33 для провода круглого и 0,4 – прямоугольного сечения;
  • kc = 0,95;
  • частота переменного тока в сети – 50 Гц;
  • для самодельного трансформатора с номинальным рабочим режимом 20%, допустимая плотность тока в медных обмотках – 8 А/мм 2 ,в алюминиевых – 5 А/мм 2 ,в комбинированных медно-алюминиевых – 6,5 А/мм 2 .

Если подставить в формулу все эти значения, получается формула, связывающая между собой Sо, Sс и Рг:

где k – коэффициент, значение которого зависит от формы сердечника и материала обмоток. Выглядит она следующим образом:

  • если обе обмотки медные – для тороидального трансформатора k = 2,76, для стержневого – 2,47;
  • если медно-алюминиевые – для тороидального k = 2,24, для стержневого – 2;
  • если обе алюминиевые – для тороидального k = 1,72, для стержневого – 1,54.

Пользуясь последней формулой, можно легко оценить «потянет» ли имеющийся сердечник заданные параметры. Если да, остается рассчитать число витков в каждой из обмоток. Для первичной адаптированная формула выглядит следующим образом:

где U1 – напряжение на ней (В).

Для вторичной катушки с учетом КПД трансформатора формула приобретет следующий вид:

где U2 – напряжение вторичной обмотки (В). Число витков во вторичной обмотке можно найти и экспериментально – намотать поверх первичной обмотки несколько (лучше 10) витков, измерить на них напряжение, а затем пересчитать – сколько витков нужно для обеспечения необходимого выходного напряжения.

Площадь поперечного сечения провода в обмотках можно рассчитать по формуле:

где I – значение силы тока в обмотке, j – допустимая плотность тока в ней.

Пример расчета сварочного трансформатора

В качестве примера рассмотрим расчет и изготовление сварочника, изготовленного из статора асинхронного трехфазного электродвигателя. Удалив провода обмоток из пазов статора и вынув его из корпуса электродвигателя, получаем неплохой тороидальный сердечник – основу будущего сварочного трансформатора.

Выступы пазов иногда срубают острым зубилом, что позволяет уменьшить вес сердечника. Но на электрические параметры трансформатора они практически не влияют, поэтому в большинстве случаев их не трогают. Вид на сердечник с торца показан на рис. 3а, сбоку – на 3б, намотанный трансформатор – на 3в.

Схема расчета сварочного трансформатора.

Зададимся целью изготовить трансформатор, рассчитанный на максимальный сварочный ток 150 А и напряжение 60 В. Его электрическая мощность равна:

Р = 150 А * 60 В = 9000 Вт.

Произведем оценку габаритной мощности магнитопровода. Диаметр окна равен 12 см (см. рис. 3а), а его площадь:

Sо= π * d 2 / 4 = 3,14 * 144 / 4 (см 2 ) ≈ 113 см 2.

Площадь поперечного сечения сердечника:

Sс=h * Н = 1,74 см * 20 см ≈ 35 см 2

Габаритная мощность сердечника:

Рг = 2,76 * 113 * 35 (Вт) ≈ 10916 Вт.

Поскольку Рг > Р – магнитопровод подходит для изготовления трансформатора с требуемыми параметрами.

Переходим к расчету обмоток. Начинаем с числа витков. Для первичной обмотки оно равно:

N1 = 40 * 220 / 35 = 251 виток.

Количество витков для вторичной обмотки:

N2 = 42 * 60 / 35 = 72 витка.

Максимальный ток во вторичной обмотке 150 А. Тогда площадь поперечного сечения проводника, которым она наматывается, должна быть равна:

S2 = 150 А /(8 А/мм 2 ) ≈ 19 мм 2 .

Из определения коэффициента трансформации ток в первичной обмотке:

Площадь поперечного сечения провода, которым она намотана:

S1 = 43 А /(8 А/мм 2 ) ≈ 5,4 мм 2 .

Таким образом, можно утверждать, что предлагаемая методика расчета сварочного трансформатора, позволяет осуществить его практически для любого сердечника, оказавшегося в распоряжении домашнего мастера.

Источник:
http://moyasvarka.ru/instrumenty/raschet-svarochnogo-transformatora.html

Точечная сварка из сварочного трансформатора

Конструктивные элементы сварочного трансформатора

Обе катушки изолируются друг от друга и от стального сердечника. Поскольку сварочный трансформатор должен обладать большой мощностью, то он также нуждается в подходящем корпусе для собранного сердечника и обмоток, среды, с помощью которой можно изолировать сердечник и его обмотки, а также в устройстве интенсивного охлаждения обмоток. Чтобы изолировать и вывести клеммы обмотки из корпуса, используются втулки, изготовленные из сильного диэлектрика.

Во всех промышленных моделях сварочных трансформаторов сердечник изготовлен из пластин листовой трансформаторной стали. Этот материал представляет собой фактически чистое железо с повышенным содержанием кремния, что обеспечивает непрерывность магнитного потока при минимально допустимых значениях включённым минимумом воздушного зазора. Трансформаторная сталь обладает также высокой магнитной проницаемостью и малыми потерями на гистерезис. Для обеспечения надлежащей прочности, пластины сердечника после штамповки подвергают термической обработке.

Обмотки трансформатора представляют собой диски, уложенные изоляционными пространствами между катушками. Эти изоляционные пространства образуют горизонтальные охлаждающие и изоляционные каналы. Для сердечников и катушек сварочных трансформаторов должна быть предусмотрена жёсткая механическая фиксация. Это поможет минимизировать вибрации агрегата, и уменьшить уровень шума, создаваемого при его работе. Качество, долговечность и эффективность управления основными функциями сварочного трансформатора определяют срок его службы.

Все выводы трансформатора выводятся из корпусов через соответствующие втулки. Их конструкция и размеры устанавливаются в зависимости от передаваемой мощности.

Выбор между ядром и типом оболочки производится путём сравнения стоимости, поскольку аналогичные характеристики могут быть получены разными способами. Например, для увеличения пределов регулировки напряжения на сварочной дуге оболочки имеют увеличенную длину поворота катушки. Другими параметрами, которые сравниваются при выборе, считаются энергетические характеристики устройства, масса, условия пробоя изоляции, распределение тепла.

Схема и расчёт трансформатора

В ходе расчёта подлежат определению такие параметры:

  1. Эксплуатационные показатели: тип питающей сети, диапазон регулировки, фактическая мощность, продолжительность непрерывного действия.
  2. Размеры сварочного электрода.
  3. Условия непрерывной работы.
  4. КПД устройства.

Некоторые из перечисленных параметров взаимосвязаны, например, фазность и напряжение сети.

Ток сварки определяет функциональные возможности трансформатора, а именно, толщину свариваемого металла. Кроме того, с ростом тока увеличиваются диаметр проволоки в обмотках, масса агрегата и его размеры, что обусловлено необходимостью более эффективного охлаждения обмоток.

Соотношения между основными эксплуатационными характеристиками сварочных трансформаторов приведены ниже:

  • При толщине обрабатываемой заготовки 1…2 мм, номинальный диаметр электрода составляет 1,6 мм, а рекомендуемое значение тока – не более 50 А.
  • При толщине обрабатываемой заготовки 2…3 мм, номинальный диаметр электрода составляет 2…2,5 мм, а рекомендуемое значение тока – не более 100 А.
  • При толщине обрабатываемой заготовки 3…4 мм, номинальный диаметр электрода составляет 3 мм, а рекомендуемое значение тока – не более 160 А.
  • При толщине обрабатываемой заготовки 4…6 мм, номинальный диаметр электрода составляет 4 мм, а рекомендуемое значение тока – не более 200 А.
  • При толщине обрабатываемой заготовки 6…8 мм, номинальный диаметр электрода составляет 5 мм, а рекомендуемое значение тока – не более 250 А.
  • При толщине обрабатываемой заготовки 10…24 мм, номинальный диаметр электрода составляет 6…8 мм, а рекомендуемое значение тока – не более 320 А.
  • При толщине обрабатываемой заготовки более 24 мм, номинальный диаметр электрода составляет 8…10 мм, а рекомендуемое значение тока – не более 630 А.

Более детальный расчёт параметров сварочного трансформатора ведут обычно при изготовлении агрегата своими руками.

Холостой ход

Сварочный трансформатор имеет два режима работы: под нагрузкой и холостой. Во время выполнения шва, вторичная обмотка замыкается между электродом и изделием.

Мощный сварочный ток позволяет плавить металл и образовывать надежное соединение. Но когда сварка окончена, вторичная цепь размыкается. И аппарат переходит в режим холостого хода.

Электродвижущие силы в первичной катушке имеют двойное происхождение.

Первые образуются из-за рабочего магнитного потока, а вторые путем рассеяния. Эти ЭДС создаются ответвляясь от основного потока в магнитопроводе, и замыкаясь между витками катушки по воздуху. Именно они и образуют величину холостого тока.

Холостой ход должен быть безопасным для жизни сварщика и ограничиваться 48 V. некоторые модели имею допустимое значение в 60-70 V.

Если ЭДС от потока рассеивания превышают эти значения, то устанавливается автоматический ограничитель этого значения. Он должен срабатывать менее чем через секунду после разрыва цепи и прекращения сварки. Для дополнительной защиты сварщика корпус аппарата всегда заземляется, чтобы возникшее напряжение на кожухе, из-за повреждения изоляции первичной обмотки, миновало человеческое тело и уходило в землю.

Модели сварочных трансформаторов

Модель ТС-500. Представляет собой агрегат для производства сварки в промышленных условиях. Рассчитан на работу в однофазных сетях, регулировка мощности производится механически. Конструкция проста, но обеспечивает необходимое качество работ лишь при использовании сравнительно больших токов, а потому малопригодна для сварки или резки тонколистового металла. Минусом считается массивность устройства. Цена – от 15500 руб.

Читайте также  ТОП-7 лучших сверлильных станков: рейтинг, отзывы

Модель ТД-500. Характерная особенность конструкции – наличие подвижных обмоток, что обеспечивает увеличенное магнитное рассеивание. Большинство технических характеристик сходно с моделью ТС-500, однако масса агрегата снижена на 40 кг. Цена – от 18000 руб.

Модель ТДМ-305. Устройство переносного типа с естественным охлаждением обмоток. Может использоваться как на производстве, так и в быту. Наиболее эффективен при средних значениях сварочного тока, но при длительном применении стабильность работы понижается. Цена – от 8000 руб.

Модель ТДМ-401. Предназначена для выполнения ручной дуговой сварки средне- и толстолистовых деталей, и применяется преимущественно в производственных условиях. Прост в конструкции и управлении, для перемещения в пределах рабочего участка оснащён колёсами. При длительном применении нуждается в дополнительной вентиляции, а также в тщательном подборе сечения питающих кабелей. Цена – от 17000 руб.

Модель ТДМ-503. Рассчитана для применения в трёхфазных сетях, используется главным образом для сварки металла средней толщины. Вентиляция – естественная, что ограничивает длительность непрерывной работы. Трансформатор прост в обслуживании, однако не отличается стабильностью работы при значительных скачках напряжения в сети. Цена – от 24000 руб.

Источник:
http://metiztorg72.ru/oborudovanie/raschet-transformatora-dlya-svarochnogo-poluavtomata-2.html

Способы расчёта различных конфигураций трансформаторов

Как бы ни развивалась электроника, но всё же отказаться от такого устройства, как трансформатор пока не удаётся. Каждый надёжный блок питания и преобразователь напряжения содержит этот электромагнитный аппарат с гальванической развязкой обмоток. Они применяются широко и на производстве, и в быту, и представляют собой статическое электромагнитное устройство, работающее по принципу взаимоиндукции. Состоят такие устройства из двух основных элементов:

  1. замкнутого магнитопровода;
  2. двух и более обмоток.

Обмотки трансформаторов не имеют между собой никакой связи, кроме индуктивной. Предназначен он для преобразования только переменного напряжения, частота которого, после передачи по магнитопроводу, будет неизменна.

Расчет параметров трансформатора необходим для того, чтобы на вход этого устройства было подано одно напряжение, а на выходе генерировалось пониженное или повышенное напряжение другой заданной величины. При этом нужно учесть токи, протекающие во всех обмотках, а также мощность устройства, которая зависит от подключаемой нагрузки и от назначения.

Любой даже простейший расчет трансформатора состоит из электрической и конструктивной составляющей. Электрическая часть включает в себя:

  • Определение напряжений и токов, протекающих по обмоткам;
  • Определение коэффициента трансформации.

К конструктивным относятся:

  • Размеры сердечника и тип устройства;
  • Выбор материала сердечника трансформатора;
  • Возможные варианты закрывающего корпуса и вентиляции.

Через один квадратный сантиметр сечения магнитопровода протекает магнитная индукция, единица измерения её — Тесла. Тесла, в свою очередь, выдающийся физик, в честь которого и она и названа. Это значение напрямую зависит от частоты тока. И так при частоте 50 Гц и, допустим, 400 Гц величины индукция (тесла) будет разной, а значит и габариты устройства с увеличением частоты снижаются.

После этого определяют падение напряжения и потери в магнитопроводе, на этапе электрического расчёта все эти величины определяются лишь примерно. Расчет нагрузки в трансформаторе является ключевым в его исполнении. В сварочном, например, нагрузочную особенность выражают из режима короткого замыкания. Большое значение тока короткого замыкания, связано с малым значением сопротивления трансформатора в данных условиях работы.

Важнейшим элементом всех формул данного расчёта является коэффициент трансформации, который определяется как соотношение числа намотанных витков в первичной обмотке, к количеству витков во вторичной обмотке. Если обмоток не две, а больше, значит и соответственно таких коэффициентов тоже будет несколько. Если известны напряжения обмоток, то можно его рассчитать как отношение напряжений первичной обмотки, ко вторичной.

Расчет силового трансформатора

Расчет силового трансформатора напрямую зависит от количества фаз в питающей сети, то есть однофазной или же трехфазной. Прежде всего в силовом трансформаторе основную роль играет его мощность. Упрощенный расчет трансформаторов малой мощности и большой можно выполнить и в домашних условиях. Расчёт потерь неизбежен, как и для любых электромагнитных устройств, здесь же он состоит из двух основных магнитных составляющих:

Расчет однофазного трансформатора

Рассчитывая понижающие трансформаторы однофазного тока, как самые распространенные в быту, для начала нужно выяснить его мощность. Конечно, понизить напряжение можно и другими способами, но этот самый эффективный и даёт ещё вдобавок гальваническую развязку, а значит возможность подключения силовой нагрузки.

Например, если напряжение первичной обмотки 220 Вольт, что свойственно для стандартных сетей однофазного тока, то вторичное напряжение нужно определить по нагрузке, которая будет подключаться к нему. Это может быть как низшее, так и высшее напряжение. Например, для зарядки автомобильных аккумуляторов необходимо напряжение 12-14 Вольт. То есть вторичное напряжение и ток тоже должно быть заранее известно.

Примерная мощность будет равна произведению тока на напряжение. Стоит учесть также и КПД. Для силовых аппаратов он составляет примерно 0,8–0,85. Тогда с учётом этого коэффициента полезного действия расчётная мощность будет составлять:

Именно эта мощность и ложится в основу расчёта поперечного сечения сердечника, на котором будут произведены намотки обмоток. Кстати, видов этих сердечников магнитопровода может быть несколько, как показано на рисунке снизу.

Далее, по этой формуле определяем сечение

Коэффициент 1–1,3 зависит от качества электротехнической стали. К электротехнической стали относится чистое железо в виде листов или ленты толщиной 0,1–8 мм либо в виде сортового проката (круг или квадрат) различных размеров.

После чего определяется количество витков, на один вольт напряжения.

Берем среднюю величину коэффициента 60.

Теперь зная количество витков на один вольт есть возможность подсчитать количество витков в каждой обмотке. Осталось всего лишь найти сечение провода, которым выполнится намотка обмоток. Медь, для этого лучший материал, так как обладает высокой токопроводимостью и быстро остывает в случае нагрева. Тип провода ПЭЛ или ПЭВ. Кстати, нагрев даже самого идеального электромагнитного устройства неизбежен, поэтому при изготовлении сетевого трансформатора актуален и вопрос вентиляции. Для этого хотя бы предусмотреть на корпусе естественную вентилируемую конструкцию путём вырезания отверстий.

Ток в обмотке равен

Диаметр сечения проводника для обмотки определяется по формуле:

где 0,7-0,9 это коэффициент плотности тока в проводнике. Чем больше его значение, тем меньше будет греться провод при работе.

Существует множество методов расчёта характеристик и параметров, этот же самый простой, но и примерный (неточный). Более точный расчет обмоток трансформатора применяется для производственных и промышленных нужд.

Расчёт трехфазного трансформатора

Изготовление трехфазного трансформатора и его точный расчёт процесс более сложный, так как здесь первичная и вторичная обмотка состоят уже из трёх катушек. Это разновидность силового трансформатора, магнитопровод которого выполнен чаще всего стержневым способом. Здесь уже появляются такие понятие, как фазные и линейные напряжения. Линейные измеряются между двумя фазами, а фазные между фазой и землёй. Если трансформатор трехфазный рассчитан на 0,4 кВ, то линейное напряжение будет 380В, а фазное 220 В. Обмотки могут быть соединены в звезду или треугольник, что даёт разные величины токов и напряжений.

Обмотки трехфазного трансформатора расположены на стержнях так же, как и в однофазном, т. е. обмотки низшего напряжения НН размещаются ближе к стержню, а обмотки высшего напряжения ВН — на обмотках низшего напряжения.

Высоковольтные трансформаторы трёхфазного тока рассчитываются и изготавливаются исключительно в промышленных условиях. Кстати, любой понижающий трансформатор при обратном включении, выполняет роль повышающего напряжение устройства.

Расчет тороидального трансформатора

Такая конструкция трансформаторов используется в радиоэлектронной аппаратуре, они обладают меньшими габаритами, весом, а также повышенным значением КПД. За счёт применения ферритового стержня помехи практически отсутствует, это даёт возможность не экранировать данные устройства.

Простой расчет тороидального трансформатора состоит из 5 пунктов:

  • Определение мощность вторичной обмотки P=Uн*Iн;
  • Определение габаритной мощности трансформатора Рг=Р/КПД. Величина его КПД примерно 90-95%;
  • Площадь сечения сердечника и его размеры

  • Определение количества витков на вольт и соответственно количества витков для необходимой величины напряжения.

  • Расчёт тока в каждой обмотке и выбор диаметра проводника делается аналогично, как и в силовых однофазных трансформаторах, описанных выше.

Расчет трансформатора для сварочного полуавтомата

Сварочный полуавтомат предназначен для сварки с механической подачей специальной сварочной проволоки вместо электрода. Источник питания такого устройства также имеет в своей основе мощный трансформатор. Расчёт основан на принципе его работы, на выходе которого должно быть 60 Вольт при холостом ходу. Работает он в короткозамкнутом режиме поэтому и нагрев его обмоток явление нормальное. Расчёт в принципе тоже аналогичен, только в этом случае ещё стоит учесть мощность при продолжительной сварке

Pдл = U2I2 (ПР/100)0.5 *0.001.

Напряжение и силу одного витка измеряют в вольтах и оно будет равно E=Pдл0.095+0.55. Зная эти величины можно приступить и к полному расчёту.

Расчет импульсного трансформатора двухтактного преобразователя

Преимуществом двухтактных преобразователей является их простота и возможность наращивания мощности. В правильно сконструированном двухтактном преобразователе через обмотку проходит неизменный ток, поэтому сильное подмагничивание сердечника отсутствует. Это позволяет использовать полный цикл перемагничивания и получить максимальную мощность. Так как он выполняется на ферритовом сердечнике то и расчет выходного напряжения трансформатора аналогичен обычному тороидальному.

Упростить варианты расчета трансформатора можно применяя специальные калькуляторы расчета, которые предлагают некоторые интернет-ресурсы. Стоит только внести желаемые данные, и автомат выдаст нужные параметры планируемого электромагнитного устройства.

Видео с расчетом трансформатора

Источник:
http://amperof.ru/elektropribory/sposoby-raschyota-razlichnyh-konfiguratsij-transformatorov.html