Удельная теплоемкость стали

Удельная теплоемкость стали

Удельная теплоемкость стали распространенных марок

В сводной таблице представлена удельная теплоемкость стали распространенных марок: углеродистых, низко- и высоколегированных сталей, а также чугуна при различной температуре.

Приведены значения средней удельной теплоемкости низколегированных сталей, углеродистых сталей при различных температурах, указана теплоемкость высоколегированных сталей с особыми свойствами в зависимости от температуры.

По данным таблицы видно, что значение удельной теплоемкости стали с ростом температуры увеличивается. Следует отметить, что теплоемкость стали при комнатной температуре находится в диапазоне от 440 до 550 Дж/(кг·град); удельная теплоемкость стали в таблице представлена в интервале температуры от 20 до 1000°С.

Средняя удельная теплоемкость высоколегированных сталей

В таблице даны значения массовой удельной теплоемкости высоколегированных сталей с особыми свойствами таких, как сталь Г13 и сталь Р18.
Теплоемкость сталей Г13 и Р18 приведена в размерности кДж/(кг·град) при температурах 50…1300°С.

Средняя удельная теплоемкость сталей низколегированных

В таблице представлены значения массовой удельной теплоемкости низколегированных сталей. Даны значения теплоемкости для следующих марок стали: сталь 30Х, 30Н3, 30ХН3, 30Г2, 50С2Г. Удельная теплоемкость сталей в таблице выражена в кДж/(кг·град) и указана в зависимости от температуры — в интервале от 50 до 1300°С.

Удельная теплоемкость углеродистых сталей и чугуна при различной температуре

В таблице приведены значения удельной (массовой) теплоемкости следующих углеродистых сталей и чугуна: сталь 08, ст.20, ст.35, ст.У8, сталь листовая электротехническая, чугун белый, чугун СЧ10. Теплоемкость представлена в таблице в интервале температуры от 80 до 1573 К в размерности кДж/(кг·град) .

Удельная теплоемкость легированных сталей при различной температуре

В таблице представлены значения массовой удельной теплоемкости стали следующих марок: сталь 15Л, 25Л, 45Л, 55Л, 13Н2ХА, Р18, 11Р3АМ3Ф2, Р6М5, 4Х13, 1Х12В2МФ, Х5М, 30ХМ, 30ХМА, 30ХГС, 30ХГСА, 1Х11МФ, 1Х12ВИМФ, 25Х2МФА, ХН35ВТ (ЭИ612, ЭИ612К), Х17Н13М2Т (ЭИ448), Х16Н25М6 (ЭИ395), Х22Н26, ВЖ100, ШХ15. Массовая теплоемкость легированных сталей в таблице выражена в кДж/(кг·град) в зависимости от температуры — в интервале от 300 до 1400К.

Средняя удельная теплоемкость углеродистых сталей

В таблице представлены значения массовой теплоемкости железа и следующих углеродистых сталей: сталь 08КП, ст. 08, сталь 20, 40, сталь У8, У8′, у12. Массовая удельная теплоемкость углеродистых сталей в таблице дана в размерности кДж/(кг·град) в интервале температуры от 50 до 1300°С.

Источники:

Источник:
http://thermalinfo.ru/svojstva-materialov/metally-i-splavy/teploemkost-stali

Теплофизические свойства чугуна

Коэффициент линейного расширения α, удельная теплоемкость с и теплопроводность λ зависят от состава и структуры чугуна, а также от температуры. Поэтому значения их приводят в соответствующем интервале температур. С повышением температуры значения α и с обычно увеличиваются, а λ уменьшается (табл 1).

Коэффициент линейного расширения α и удельная теплоемкость c реальных неоднородных структур, в том числе чугуна, может быть определена по правилу смешения:

Теплопроводность сплавов и смесей в отличие от коэффициента α и теплоемкости c не может быть определена по правилу смешения. Влияние отдельных элементов на теплопроводность расчетным путем можно установить лишь приближенно.

На коэффициент α и удельную теплоемкость с влияет главным образом состав чугуна, а на теплопроводность λ — степень графитизации, дисперсность структуры, неметаллические включения и т. п.

Коэффициент линейного расширения определяет не только изменения размеров в зависимости от температуры, но и напряжения, образующиеся в отливках. Уменьшение α является полезным с этих позиции и облегчает условия получения качественных отливок. Но в случае совместной работы чугунных деталей с деталями из цветных сплавов или других материалов, имеющих больший коэффициент линейного расширения, приходится стремиться к увеличению значения α для чугуна.

Теплоемкость и теплопроводность имеют большое значение для таких отливок, как отопительные трубы, изложницы, детали холодильных установок и двигателей внутреннего сгорания и т.д., так как определяют равномерность распределения температуры в отливках и интенсивность отвода теплоты.

В табл. 3 приведены теплофизические свойства чугунов различных групп.

Коэффициент линейного расширения α

Коэффициент линейного расширения α. Наибольшее влияние на коэффициент α оказывает углерод, в особенности в связанном состоянии. Одному проценту углерода соответствует примерно в 5 раз большее количество цементита, чем графита. Поэтому графитизирующие элементы (Si, Al, Ti, Ni, Сu и др.) повышают, а антиграфнтизирующие (Cr, V, W, Мо, Мn и др.) уменьшают коэффициент линейного расширения,

Наибольшим значением α отличаются аустенитные никелевые чугуны, а также ферритные алюминиевые чугуны типа чугаль и пирофераль. Поэтому при достаточно высоком содержании Ni, Сu, Мn значение α; резко увеличивается. Однако при содержании Ni>20% α понижается : и достигает минимума при 35—37 % Ni. Форма графита существенно влияет на коэффициент линейного расширения лишь при низких температурах; α высокопрочного чугуна с шаровидным графитом несколько выше, чем α чугуна с пластинчатым графитом.

Удельная теплоемкость чугуна

Удельная теплоемкость с чугуна, как и железа, увеличивается с повышением температуры (см. табл. 2) и характеризуется скачкообразным повышением при фазовом превращении Feα→Feλ; затем удельная теплоемкость чугуна резко падает, но с дальнейшим повышением температуры вновь увеличивается.

Графитизация понижает удельную теплоемкость чугуна; отсюда с белого; чугуна несколько выше, чем серого и высокопрочного (см. табл. 4).

Теплопроводность чугуна.

Теплопроводность чугуна в большей мере, чем другие физические свойства, зависит от структуры, ее дисперсности и мельчайших загрязнений, т. е. является структурно-чувствительным свойством.

Графитизация повышает теплопроводность; следовательно, элементы увеличивающие степень графитизации и размер графита, повышают, а элементы, препятствующие графитизации и увеличивающие дисперсность структурных составляющих, понижают. Указанное влияние графитизация меньше для шаровидного графита (см. табл. 4).

Форма графита, его выделение и распределение также влияют на теплопроводность. Например, высокопрочный чугун имеет более низкую теплопроводность, чем серый чугун. Теплопроводность чугуна с вермикулярным графитом (ЧВГ) выше, чем у ЧШГ, и близка к λ серого чугуна с пластинчатым графитом.

Высоколегированные чугуны характеризуются, как правило, более низкой теплопроводностью, чем обычные.

Источник:
http://metiz-bearing.ru/material/teplofizicheskie_svojstva_chuguna.html

Что лучше: алюминий или чугун?

Немного о физических свойствах металлов:

1. Теплопроводность — это способность вещества передавать тепло (энергию движущихся молекул) от одной части тела к другой. Чем выше значение теплопроводности, тем быстрее происходит нагрев металла.
Коэффициент теплопроводности алюминия = 200-220 Вт/м/К
Коэффициент теплопроводности чугуна = 50-70 Вт/м/К

2. Теплоемкость вещества — это количество теплоты поглощаемое веществом при нагревании на 1 градус. Чем больше значение теплоемкости, тем больше тепла запасает в себе 1 кг вещества.
Теплоемкость алюминия = 920 Дж/кг/К
Теплоемкость чугуна = 540 Дж/кг/К

3. Плотность вещества — это масса вещества приходящаяся на единицу объема. Чем больше значение плотности, тем тяжелее тело при равных размерах.
Плотность алюминия = 2700 кг/куб.м
Плотность чугуна = 7000 кг/куб.м

Судя по табличным данным чугун обладает значительно меньшей теплопроводностью, следовательно чугунная посуда нагревается медленнее алюминиевой. Сравнив остальные свойства металлов получим, что плотность чугуна больше в 2,5 раза, а теплоемкость меньше лишь в 1,7 раза. Таким образом, если взять два совершенно одинаковых (по форме и объему) казана из алюминия и чугуна и нагреть их до одинаковых температур, то чугунный казан будет остывать намного дольше (так как масса чугуна намного больше, теплопроводность намного меньше, а количество запасённого тепла чуть меньше, чем у алюминия).

Преимущества алюминия :

  • посуда имеет малый вес.
  • очень доступный и распространенный металл, поэтому цена на алюминиевую посуду ниже;
  • долговечна.

Преимущества чугуна:

  • чугунная посуда не тускнеет, не деформируется и не боится царапин;
  • при правильном обращении чугунная посуда практически вечна.

Недостатки алюминия :

  • из-за высокой теплопроводимости в ней легко пригорают продукты, а следы нагара трудно удаляются с ее поверхности;
  • тонкостенная алюминиевая посуда легко деформируется и теряет свой первоначальный привлекательный внешний вид;
  • посуда покрывается плёнкой оксида алюминия и начинает темнеть, но это не влияет на вкус пищи в процессе приготовления;
  • нельзя хранить пищу в алюминиевой посуде долгое время (> 3 часов), так как посуда окисляется и меняет вкус еды.

Недостатки чугуна:

  • склонность к ржавчине, поэтому после мойки ее следует тщательно вытирать или просушивать на плите, а затем смазывать маслом;
  • большой вес;
  • как и в алюминевой посуде нельзя хранить пищу долгое время (> 3 часов).

Достаточно физики! Пора готовить!

Чугунную посуду рекомендуют для приготовления птицы, тушеных овощей и мяса, а также для приготовления плова.
В алюминиевых кастрюлях хорошо варить макароны, каши и овощи, а вот тушить мясо, готовить борщ и кислые щи в них не следует.
Не следует использовать алюминиевую и чугунную посуду для хранения готовой пищи, для соления и квашения, поскольку в ней пища окисляется и теряет свои вкусовые качества.

Читайте также  Как выбрать лучший ручной заклепочник: виды, основные характеристики, рейтинг популярности и обзор 10 моделей, их плюсы и минусы

Таким образом, чтобы ответить на вопрос: «Что лучше: чугунная или алюминиевая посуда?», нужно решить детскую задачку, про «Кто победит – кит или слон?». Алюминиевая и чугунная посуда отличаются по большому перечню характеристик и просто не смогут друг друга заменить. Сложно приготовить в алюминиевой посуде вкусный плов, а в чугунной посуде — макароны по-флотски.

Источник:
http://mir-kazanov18.ru/poleznaya-informatsiya/chto-luchshe-alyuminiy-ili-chugun

Теплоемкость чугуна и стали

Теплофизические свойства чугуна

Коэффициент линейного расширения α, удельная теплоемкость с и теплопроводность λ зависят от состава и структуры чугуна, а также от температуры. Поэтому значения их приводят в соответствующем интервале температур. С повышением температуры значения α и с обычно увеличиваются, а λ уменьшается (табл 1).

Коэффициент линейного расширения α и удельная теплоемкость c реальных неоднородных структур, в том числе чугуна, может быть определена по правилу смешения:

Теплопроводность сплавов и смесей в отличие от коэффициента α и теплоемкости c не может быть определена по правилу смешения. Влияние отдельных элементов на теплопроводность расчетным путем можно установить лишь приближенно.

На коэффициент α и удельную теплоемкость с влияет главным образом состав чугуна, а на теплопроводность λ — степень графитизации, дисперсность структуры, неметаллические включения и т. п.

Коэффициент линейного расширения определяет не только изменения размеров в зависимости от температуры, но и напряжения, образующиеся в отливках. Уменьшение α является полезным с этих позиции и облегчает условия получения качественных отливок. Но в случае совместной работы чугунных деталей с деталями из цветных сплавов или других материалов, имеющих больший коэффициент линейного расширения, приходится стремиться к увеличению значения α для чугуна.

Теплоемкость и теплопроводность имеют большое значение для таких отливок, как отопительные трубы, изложницы, детали холодильных установок и двигателей внутреннего сгорания и т.д., так как определяют равномерность распределения температуры в отливках и интенсивность отвода теплоты.

В табл. 3 приведены теплофизические свойства чугунов различных групп.

Коэффициент линейного расширения α

Коэффициент линейного расширения α. Наибольшее влияние на коэффициент α оказывает углерод, в особенности в связанном состоянии. Одному проценту углерода соответствует примерно в 5 раз большее количество цементита, чем графита. Поэтому графитизирующие элементы (Si, Al, Ti, Ni, Сu и др.) повышают, а антиграфнтизирующие (Cr, V, W, Мо, Мn и др.) уменьшают коэффициент линейного расширения,

Наибольшим значением α отличаются аустенитные никелевые чугуны, а также ферритные алюминиевые чугуны типа чугаль и пирофераль. Поэтому при достаточно высоком содержании Ni, Сu, Мn значение α; резко увеличивается. Однако при содержании Ni>20% α понижается : и достигает минимума при 35—37 % Ni. Форма графита существенно влияет на коэффициент линейного расширения лишь при низких температурах; α высокопрочного чугуна с шаровидным графитом несколько выше, чем α чугуна с пластинчатым графитом.

Удельная теплоемкость чугуна

Удельная теплоемкость с чугуна, как и железа, увеличивается с повышением температуры (см. табл. 2) и характеризуется скачкообразным повышением при фазовом превращении Feα→Feλ; затем удельная теплоемкость чугуна резко падает, но с дальнейшим повышением температуры вновь увеличивается.

Графитизация понижает удельную теплоемкость чугуна; отсюда с белого; чугуна несколько выше, чем серого и высокопрочного (см. табл. 4).

Теплопроводность чугуна.

Теплопроводность чугуна в большей мере, чем другие физические свойства, зависит от структуры, ее дисперсности и мельчайших загрязнений, т. е. является структурно-чувствительным свойством.

Графитизация повышает теплопроводность; следовательно, элементы увеличивающие степень графитизации и размер графита, повышают, а элементы, препятствующие графитизации и увеличивающие дисперсность структурных составляющих, понижают. Указанное влияние графитизация меньше для шаровидного графита (см. табл. 4).

Форма графита, его выделение и распределение также влияют на теплопроводность. Например, высокопрочный чугун имеет более низкую теплопроводность, чем серый чугун. Теплопроводность чугуна с вермикулярным графитом (ЧВГ) выше, чем у ЧШГ, и близка к λ серого чугуна с пластинчатым графитом.

Высоколегированные чугуны характеризуются, как правило, более низкой теплопроводностью, чем обычные.

Ванны и батареи физика

Принципы расчета теплоёмкости металлической посуды применимы для батарей и ванн.

Чугунная батарея остывает дольше.

Еще раз обращу внимание, что темпы остывания предмета напрямую зависят от массы и удельной теплоёмкости материала, из которого он изготовлен. Не путать теплоёмкость и теплопроводность!

Чугунная батарея тяжелее алюминиевой раза в три. Следовательно, обладает большей теплоёмкостью в 2,5 раза.

Очень часто задают вопрос: почему чугунные батареи остывают дольше стальных?

И удельные теплоёмкости — 540 Дж/(кг*К) для чугуна и 460 Дж/(кг*К) для стали — относительно мало отличаются (15%). А весь секрет — в значительной степени — заключается в существенно большей массе чугунных батарей.

Масса секции батарей:

Если же сравнивать две одинаковые по массе батареи — из стали и чугуна — то при одинаковой температуре прогрева чугунная батарея сохранит тепла больше на 15%.

Чугунная ванна сохраняет тепло.

То есть количество выделяемого тепла при остывании на 1 градус у чугунной ванны больше, чем у ванны из стали (в нашем примере) в 2,5 раза.

Теплоёмкость воды в ванне:

Из чего следует, температура горячей воды (40 градусов), налитая в ванну при комнатной температуре (20 градусов) упадет на 1 градус для стальной ванны и на 2,5 градуса для чугунной ванны.

Похожие статьи:

Металлическая посуда глазами физика

Возвращаясь к теме металлической посуды, покажу в цифрах физику процессов.

Теплопроводимость.

Теплопроводность численно равна количеству теплоты (Дж), проходящее через единицу площади (кв.м) за единицу времени (сек) при единичном температурном градиенте.

Коэффициенты теплопроводности из справочника:

Вывод: чугун распределяет тепло медленно. Иными словами, мясо на чугунной сковороде не будет пригорать (в том числе) из-за более равномерного распределения тепла.

Похожая ситуация в приготовлении шашлыка на природе. Приготовление мяса на углях позволяет пропечь куски. Приготовление на открытом огне просто зажаривает внешнюю часть кусков мяса, оставив внутренние части сырыми.

Теплоёмкость.

Теплоёмкость численно равна количеству теплоты (Дж), которое необходимо передать, чтобы изменить его температуру на единицу (К).

Удельная теплоёмкость.

Удельная теплоёмкость – количество теплоты (Дж), которое необходимо передать единице массы вещества (кг), чтобы его температура изменилась на единицу температуры (К).

Иными словами, чтобы посчитать теплоёмкость металлической посуды – сколько тепловой энергии будет в прогретой до нужной температуры посуде – необходимо массу посуды (кг) умножить на удельную теплоёмкость металла (Дж/(кг*К)), из которого она изготовлена.

Значения удельной теплоёмкости из справочника:

Приблизительные массы металлических сковород:

Вывод: чугунная посуда массой 2,1кг будет почти в два раза (1,9 раза) больше отдавать тепла, чем алюминиевая посуда массой 0,65кг. И наоборот, чугунная посуда требует в два раза больше энергии для прогрева, чем алюминиевая посуда.

Иными словами, для поддержания (сохранения) температуры готовки чугунная посуда подходит лучше. А для разогрева еды будет более пригодна алюминиевая посуда.

Чугун СЧ30

Поставщик АО “Завод специального машиностроения “Маяк”, zsm-m.ru
Купить: г. Калуга +7(4842) 75-10-21, 201-248, +7 900 579-08-39 (многоканальные), zsm-mk[æ]yandex.ru
Литье марки СЧ30

Удельная теплоемкость и теплопроводность чугуна СЧ30 (и других чугунов): удельная теплоемкость С чугуна, как и железа, увеличивается с повышением температуры и характеризуется скачкообразным повышением при фазовом превращении Fea—Feу; затем удельная теплоемкость чугуна резко падает, но с дальнейшим повышением температуры вновь увеличивается.

Графитизация понижает удельную теплоемкость чугуна; отсюда с белого чугуна несколько выше, чем серого и высокопрочного.

Теплопроводность чугуна в большей мере, чем другие физические свойства, зависит от структуры, ее дисперсности и мельчайших загрязнений, т. е. является структурно-чувствительным свойством.

Графитизация повышает теплопроводность; следовательно, элементы, увеличивающие степень графитизации и размер графита, повышают, а элементы, препятствующие графитизации и увеличивающие дисперсность структурных составляющих, понижают λ . Указанное влияние графитизации меньше для шаровидного графита.

Читайте также  Водная станция не набирает давление и не отключается: причины и их устранение видео

Форма графита, его выделение и распределение также влияют на теплопроводность. Например, высокопрочный чугун имеет более низкую теплопроводность, чем серый чугун. Теплопроводность чугуна с вермикулярным графитом (ЧВГ) выше, чем у ЧШГ, и близка к Л серого чугуна с пластинчатым графитом.

Высоколегированные чугуны характеризуются, как правило, более низкой теплопроводностью, чем обычные.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Теплоемкость чугуна

Удельная теплоемкость и теплопроводность чугуна СЧ30 ( и других чугунов ) : удельная теплоемкость ĺ°?
чугуна, как и железа, растет с повышением температуры и характеризуется скачкообразным повышением при фазовом превращении Fe a 窶認e у ;
потом удельная теплоемкость чугуна резко падает, но с последующим повышением температуры снова растет.

На значение удельной теплоёмкости влияет температура вещества и другие термодинамические параметры.
В качестве примера, измерение удельной теплоёмкости воды даст разные результаты при 20 °C и 60 °C.
Кроме того, удельная теплоёмкость зависит от того, каким типом позволено изменяться термодинамическим параметрам вещества ( давлению, объёму и т. д. ) ;
например, удельная теплоёмкость при непрерывном давлении ( C P ) и при непрерывном объёме ( C V ), вообще разговаривая, разные.

Жидкотекучесть зависит от характеристик металла и фигуры : она может быть установлена различными методами.
Чаще всего, жидкотекучесть, определяемая длиной L заполненной пробы, растет при уменьшении вязкости, увеличении перегрева ( при этом великое влияние жидкотекучесть оказывает перегрев выше температуры начала затвердевания ), уменьшении интервала затвердевания ( наибольшая жидкотекучесть наблюдается при эвтектическом составе ) и зависит от скрытой теплоты плавления q и теплоемкости с, отложенных к единице объема.

Сопротивление коррозии зависит от структуры чугуна и от наружной сферы ( ее состав, температура, а также ее движения ).
По убывающему электродному потенциалу структурные составляющие чугуна могут быть размещены в таковой последовательности : графит ( наиболее твердый ) – цементит, фосфидная эвтектика – феррит.
Разность потенциалов между ферритом и графитом составляет 0, 56 в.
Сопротивление коррозии уменьшается по степени увеличения степени дисперсности структурных составляющих.
Однако чрезмерное снижение степени дисперсности графита также снижает сопротивление коррозии.
Легирующие элементы оказывают влияние на сопротивление чугуна коррозии в соответствии с их действием на структуру.
Повышенное сопротивление коррозии наблюдается у чугунных отливок с сохранившейся литейной коркой.
Скорость коррозии по взаимоотношению к различным средам приведена в табличках 7, 8 и 9.

который часто используют в качестве калильного элемента в каменке.
Действительно это значит, что при одном объеме каменки при использовании чугунных камней париться, не подкладывая дров в топку, можно в три раза дольше.
Особые чугунные камни для выговоров не уступают по привлекательности настоящим породам : они могут быть любой формы и величины, с декоративными узорами и надписями.
Прямоугольные, квадратные чушки удобно высказывать в печи.
Целые могут быть схожими на настоящие булыжники и основы, а таблетки из чугуна выглядят оригинально.
Специально разработанные камни из чугуна – это экологически, химически и биологически безопасный наполнитель.

Если вы усвоили правила приготовления на чугуне, у вас не будет проблем с отмыванием даже дешевейшей чугунки.
Совершенно довольно будет просто промыть ее под струей воды губкой, высушить на тихом огоньке, потом побрызгать масло и еще немного подержать на огоньке.
Но редко случаются и казусы.
В этом случае сковроду, увы, придется замочить, а потом оттирать, используя маленькую повареную соль.
Не стоит отскребать пригоревшую пищу от чугунной сковородки жестяными мочалками, ножиками и т.п.
Чугунка, конечно, крепче тефлона, но царапины на ней все же остаются.
Если на сковороде полно тука, подержите ее под струей горячей водички, чтобы растаявший жир смыло, потом скоро промойте моющим средством.
После замачивания и использования моющих средств сковородку следует не просто просушивать, а слегка прокаливать.

Особенностями структуры матрицы высокопрочного чугуна с шаровидным графитом являются : а ) расположение феррита преимущественно в виде оторочек вокруг включений шаровидного графита ;
б ) тонче, чем у серого чугуна, строение пластинчатого перлита, часто напоминающее сорбитообразный перлит.
Излом высокопрочного чугуна с шаровидным графитом посветлее и мелкозернистый, чем серого чугуна.
Химический состав является одним из главных параметров при выборе чугуна для конкретной подробности.

Особую группу легированного чугуна составляет, который был помянут, для работы в условиях абразивного износа ( таблице 25 ).
Основным легирующим элементом чугуна является хром : кроме того в его составе имеется никель или молибден, в некоторых случаях проводят дополнительное легирование титаном и бором.

Источник:
http://stalcu.ru/stal/teploemkost-chuguna-i-stali.html

Как выбрать посуду? Статья для инженеров

Выбор кастрюль и сковородок может быть довольно сложной задачей. Форма посуды и рукоятки, используемые материалы, дизайн и назначение – все это факторы, влияющие на выбор. Понимание разницы в материалах, используемых для изготовления посуды, – первый шаг к ясности в вопросе, как работает посуда и что важно при ее выборе.

Базовые принципы

Назначение посуды – это передача энергии от ее источника к продукту. Существует два основных источника: газ и электричество. В обоих случаях тепло передается не равномерно: газ распределен на отдельные маленькие язычки пламени, а электричество, как правило, поступает по спирали, оставляя места, куда тепло не поступает. Так как тепло поступает неравномерно, задача повара – компенсировать это путем кулинарных приемов или с помощью посуды.

Высококачественная посуда должна быть не только износостойкой, но и эффективной в процессе передачи энергии от источника к продукту. Существует несколько факторов, влияющих на эту способность. Два основных – это теплопроводность и теплоемкость. Все дискуссии о материалах для посуды фокусируются на этих факторах.

Теплопроводность

Теплопроводность – это способность материала абсорбировать и передавать энергию. Когда нагревательный элемент контактирует с кастрюлей, тепло передается кастрюле. Это увеличивает внутреннюю кинетическую энергию кастрюли (происходит нагревание). Нагретый предмет передает энергию соседним материалам, которые имеют более низкую температуру. Чем выше теплопроводность, тем быстрее нагревается данный предмет и тем быстрее нагретые части данного предмета передают тепло еще не затронутым частям.

Например, если мы разместим на нагревательном элементе большой лист нержавеющей стали (обладающей довольно низкой теплопроводностью, если говорить о материалах для посуды), то картина будет такой: та часть, которая расположена рядом с нагревательным элементом, нагреется, тогда как остальные области будут прогреваться довольно медленно. Когда тепло дойдет до отдаленных зон листа, его центральная часть, расположенная на источнике тепла, будет просто раскалена.

Одно из решений проблемы – сделать лист толще. Нижняя часть листа будет прогреваться неодинаково с верхней частью, так как она расположена на меньшем расстоянии от нагревательного элемента. Таким образом, энергия должна передаваться от нижних слоев к верхним, чтобы верхняя часть прогревалась более равномерно. На картинке мы видим срез стального листа и зоны нагрева. Центральная точка нагрева (белая) со временем остыла, так тепло было передано более высоким слоям стали. В итоге мы видим уже более равномерное нагревание, однако и оно не идеально.

Чем толще сталь, тем равномернее нагрев поверхности. К сожалению, низкая теплопроводность приводит к тому, что общий процесс нагревания замедляется, а также замедляется ответная реакция материала (кастрюли) на повышение или понижение температуры.

Для большинства кулинарных процессов желательно, чтобы посуда быстро нагревалась, имела равномерную температуру и реагировала на ее изменения. Материалы с высокой теплопроводностью отвечают этим запросам, так как быстро передают тепло, стремительно распространяют его по всей поверхности материала и быстро реагируют на изменения температуры.

Приводим таблицу материалов и уровень их теплопроводности:

Источник:
http://1chef.ru/blog/stati/kak-vybrat-posudu-statya-dlya-inzhenerov/

Теплоемкость чугуна и стали

Удельная теплоемкость стали

Удельная теплоемкость стали распространенных марок

В сводной таблице представлена удельная теплоемкость стали распространенных марок: углеродистых, низко- и высоколегированных сталей, а также чугуна при различной температуре.

Приведены значения средней удельной теплоемкости низколегированных сталей, углеродистых сталей при различных температурах, указана теплоемкость высоколегированных сталей с особыми свойствами в зависимости от температуры.

По данным таблицы видно, что значение удельной теплоемкости стали с ростом температуры увеличивается. Следует отметить, что теплоемкость стали при комнатной температуре находится в диапазоне от 440 до 550 Дж/(кг·град); удельная теплоемкость стали в таблице представлена в интервале температуры от 20 до 1000°С.

Средняя удельная теплоемкость высоколегированных сталей

В таблице даны значения массовой удельной теплоемкости высоколегированных сталей с особыми свойствами таких, как сталь Г13 и сталь Р18.
Теплоемкость сталей Г13 и Р18 приведена в размерности кДж/(кг·град) при температурах 50…1300°С.

Читайте также  Как и чем припаять провод без паяльника в домашних условиях

Средняя удельная теплоемкость сталей низколегированных

В таблице представлены значения массовой удельной теплоемкости низколегированных сталей. Даны значения теплоемкости для следующих марок стали: сталь 30Х, 30Н3, 30ХН3, 30Г2, 50С2Г. Удельная теплоемкость сталей в таблице выражена в кДж/(кг·град) и указана в зависимости от температуры — в интервале от 50 до 1300°С.

Удельная теплоемкость углеродистых сталей и чугуна при различной температуре

В таблице приведены значения удельной (массовой) теплоемкости следующих углеродистых сталей и чугуна: сталь 08, ст.20, ст.35, ст.У8, сталь листовая электротехническая, чугун белый, чугун СЧ10. Теплоемкость представлена в таблице в интервале температуры от 80 до 1573 К в размерности кДж/(кг·град) .

Удельная теплоемкость легированных сталей при различной температуре

В таблице представлены значения массовой удельной теплоемкости стали следующих марок: сталь 15Л, 25Л, 45Л, 55Л, 13Н2ХА, Р18, 11Р3АМ3Ф2, Р6М5, 4Х13, 1Х12В2МФ, Х5М, 30ХМ, 30ХМА, 30ХГС, 30ХГСА, 1Х11МФ, 1Х12ВИМФ, 25Х2МФА, ХН35ВТ (ЭИ612, ЭИ612К), Х17Н13М2Т (ЭИ448), Х16Н25М6 (ЭИ395), Х22Н26, ВЖ100, ШХ15. Массовая теплоемкость легированных сталей в таблице выражена в кДж/(кг·град) в зависимости от температуры — в интервале от 300 до 1400К.

Средняя удельная теплоемкость углеродистых сталей

В таблице представлены значения массовой теплоемкости железа и следующих углеродистых сталей: сталь 08КП, ст. 08, сталь 20, 40, сталь У8, У8′, у12. Массовая удельная теплоемкость углеродистых сталей в таблице дана в размерности кДж/(кг·град) в интервале температуры от 50 до 1300°С.

Источники:

Удельная теплоёмкость — это количество тепла, которое требуется затратить, чтобы нагреть 1 килограмм вещества на 1 градус по шкале Кельвина (или Цельсия).

Физическая размерность удельной теплоемкости: Дж/(кг·К) = Дж·кг -1 ·К -1 = м 2 ·с -2 ·К -1 .

В таблице приводятся в порядке возрастания значения удельной теплоемкости различных веществ, сплавов, растворов, смесей. Ссылки на источник данный приведены после таблицы.

При пользовании таблицей 1 следует учитывать приближенный характер данных. Для всех веществ удельная теплоемкость зависит от температуры и агрегатного состояния. У сложных объектов (смесей, композитных материалов, продуктов питания) удельная теплоемкость может значительно варьироваться для разных образцов.

Таблица 1. Теплоемкость чистых веществ

Источники:

  • ru.wikipedia.org — Википедия: Удельная теплоемкость;
  • alhimik.ru — средняя удельная теплоемкость некоторых твердых материалов при 0. 100 °С, кДж/(кг·К) по данным пособия «Примеры и задачи по курсу процессов и аппаратов химической технологии» под ред. Романкова;
  • school.uni-altai.ru — табличные значения наиболее распространенных жидкостей;
  • school.uni-altai.ru — табличные значения наиболее распространенных твердых тел;
  • dink.ru — удельная теплоемкость при 20 °С;
  • mensh.ru — теплоаккумулирующая способность материалов;
  • vactekh-holod.ru — удельная теплоемкость твердых веществ и некоторых жидкостей;
  • xiron.ru — данные по теплоемкости пищевых продуктов;
  • aircon.ru — теплоемкость всяких разных [пищевых] продуктов;
  • masters.donntu.edu.ua — теплоемкость углей;
  • nglib.ru — средняя удельная теплоемкость твердых тел при комнатной температуре — таблица в книге С.Д. Бескова «Технохимические расчеты» в электронной библиотеке «Нефть и газ» (требуется регистрация). Это наиболее подробный из доступных в интернете справочников.

Таблица 2. Удельная теплоемкость углеродистых сталей марок Сталь 20 и Сталь 40 при высоких температурах (Дж/(кг∙ºC)) От 50 ºC до заданной температуры

Теплоемкость стали от температуры. Теплофизические свойства чугуна

Удельная теплоемкость — важный параметр, определяющий характеристики стали. Он показывает количество тепла, которое нужно затратить на нагрев килограмма сплава на 1 градус. На теплоемкость влияют разные особенности стали, что особо важно при

Под удельной теплоемкостью стали понимается количество тепла, необходимое для увеличения температуры одного килограмма вещества ровно на один градус. В равной степени может использоваться и шкала Цельсия, и Кельвина.

На теплоемкость влияют многочисленные факторы:

  • агрегатное состояние нагреваемого вещества;
  • атмосферное давление;
  • способ нагрева;
  • тип стали.

В частности высоколегированные стали содержат большие объемы углеродов, относятся к тугоплавким. Соответственно, чтобы нагреть на один градус необходимо больше тепла, чем стандартные 460 Дж/(кг*К). Низколегированные стали нагреваются быстрее и легче. Максимальное количество тепла и энергии необходимо для нагрева жаропрочных материалов, с антикоррозийной обработкой.

Расчет теплоемкости производится для каждого конкретного случая. Необходимо учитывать и то, что с повышением температуры нагреваемого вещества меняется его теплоемкость.

Удельная теплоемкость важна при проведении индукционной закалки или отпуске деталей из стали, чугуна, композитных материалов. При повышении температуры изделия на определенное количество градусов в структуре происходят фазовые изменения, соответственно, меняется и удельная теплоемкость. Для дальнейшего нагрева потребуются большие/меньшие объемы тепла.

Удельная теплоемкость характеризует не только процесс нагрева стали или композитных материалов, но и их охлаждение. Каждый материал при остывании отдает определенное количество тепла и/или энергии. Удельная теплоемкость позволяет рассчитать, какое количество тепла будет получено при остывании одного килограмма металла на один градус. На теплоотдачу влияют площадь охлаждаемого материала, наличие/отсутствие дополнительной вентиляции.

Как рассчитывают удельную теплоемкость

Рассчитывают удельную теплоемкость чаще по шкале Кельвина. Но благодаря лишь разнице в точке отсчета, показатель можно перевести в градусы Цельсия.

Параметр удельной теплоемкости определяет количество топлива, нужного для нагрева детали до заданной точки. От этого зависит тип и марка стали. Высоколегированный сплав имеет более высокое значение параметра при одинаковой температуре. Низколегированные и углеродистые стали — меньше.

Для сравнения, сталь Г13 имеет теплоемкость 0,520 кДж/(кг*град) при температуре в 100оС. Этот сплав высоколегированный, то есть содержит больше хрома, никеля, кремния и других дополнительных элементов. Углеродистая сталь марки 20 при аналогичной температуре имеет удельную теплоемкость 0,460 кДж/(кг*град).

Таким образом, удельная теплоемкость зависит не только от температуры, но и от вида стали. Высоколегированные стали менее устойчивы к образованию трещин, хуже поддается сварке. Тугоплавкость у таких материалов повышена. Эти показатели прямо влияют на , которые делают из разных марок стали. Устойчивость, легкость, прочность — важнейшие критерии, которые определяются качеством такого сплава.

В таблицах можно наблюдать показатели удельной теплоемкости высоколегированных сталей Г13 и Р18, а также ряда низколегированных сплавов. Диапазоны температур — 50:650оС.

α , удельная теплоемкость с и теплопроводность λ зависят от состава и структуры чугуна, а также от температуры. Поэтому значения их приводят в соответствующем интервале температур. С повышением температуры значения α и с обычно увеличиваются, а λ уменьшается (табл 1).

Коэффициент линейного расширения α и удельная теплоемкость c реальных неоднородных структур, в том числе чугуна, может быть определена по правилу смешения:

где x 1 , х 2 , . х nα или c структурных составляющих (табл. 2);
a 1 , a 2 , . a n — количественное содержание их.

Теплопроводность сплавов и смесей в отличие от коэффициента α и теплоемкости c не может быть определена по правилу смешения. Влияние отдельных элементов на теплопроводность расчетным путем можно установить лишь приближенно.

На коэффициент α и удельную теплоемкость с влияет главным образом состав чугуна, а на теплопроводность λ — степень графитизации, дисперсность структуры, неметаллические включения и т. п.

Коэффициент линейного расширения определяет не только изменения размеров в зависимости от температуры, но и напряжения, образующиеся в отливках. Уменьшение α является полезным с этих позиции и облегчает условия получения качественных отливок. Но в случае совместной работы чугунных деталей с деталями из цветных сплавов или других материалов, имеющих больший коэффициент линейного расширения, приходится стремиться к увеличению значения α для чугуна.

Теплоемкость и теплопроводность имеют большое значение для таких отливок, как отопительные трубы, изложницы, детали холодильных установок и двигателей внутреннего сгорания и т.д., так как определяют равномерность распределения температуры в отливках и интенсивность отвода теплоты.

В табл. 3 приведены теплофизические свойства чугунов различных групп.

Источник:
http://svarka-tokarka.ru/prochee/teploemkost-chuguna-i-stali